Rofo 2018; 190(06): 531-541
DOI: 10.1055/s-0044-101261
Review
© Georg Thieme Verlag KG Stuttgart · New York

Dosisreduktion und Dosismanagement in der Computertomografie – Aktueller Stand

Article in several languages: English | deutsch
Dominik Zinsser
1   Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Germany
,
Roy Marcus
1   Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Germany
,
Ahmed E. Othman
1   Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Germany
,
Fabian Bamberg
1   Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Germany
,
Konstantin Nikolaou
1   Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Germany
,
Thomas Flohr
2   CTE PA, Siemens Medical Solutions, Forchheim, Germany
,
Mike Notohamiprodjo
1   Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Germany
› Author Affiliations
Further Information

Publication History

23 January 2017

31 December 2017

Publication Date:
13 March 2018 (online)

Zusammenfassung

Hintergrund Die Zahl der durchgeführten CT-Untersuchungen steigt seit Jahren an. Zugleich ist die Computertomografie dosiseffizienter geworden. Das Ziel dieses Artikels ist es, einen Überblick über den aktuellen Stand der Dosisreduktion im CT zu geben und derzeit verfügbare Werkzeuge zum Dosismanagement vorzustellen.

Methode Mittels einer Literatursuche bei Pubmed wurden relevante Artikel, die sich mit der Dosisreduktion in der CT beschäftigen, identifiziert und ausgewertet.

Ergebnisse und Schlussfolgerung Durch technische Neuerungen mit individueller Anpassung von Röhrenstrom und -spannung sowie iterativer Bildrekonstruktion ist eine deutliche Dosisreduktion bei erhaltener Bildqualität möglich. Zugleich erlauben entsprechende Softwaretools eine weitere Optimierung bestehender Untersuchungsprotokolle, wobei auch große Datenmengen mit wenig Aufwand verarbeitet werden können.

Kernaussagen

  • CT-Untersuchungen werden immer häufiger durchgeführt und tragen erheblich zur nicht-natürlichen Strahlenbelastung bei.

  • Grundlage jeder CT-Untersuchung ist die korrekte Indikationsstellung.

  • Das Untersuchungsprotokoll muss auf die Fragestellung und den Patienten zugeschnitten werden.

  • Zahlreiche technische Neuerungen erlauben eine deutliche Dosisreduktion bei erhaltener Bildqualität.

  • Dosismanagement mittels entsprechender Software gewinnt zunehmend an Bedeutung.

Zitierweise

  • Zinsser D, Marcus R, Othman AE et al. Dose reduction and dose management in computed tomography – State of the art. Fortschr Röntgenstr 2018; 190: 531 – 541

 
  • References

  • 1 Mettler Jr FA, Bhargavan M, Faulkner K. et al. Radiologic and nuclear medicine studies in the United States and worldwide: frequency, radiation dose, and comparison with other radiation sources--1950–2007. Radiology 2009; 253: 520-531
  • 2 Bundesamt für Strahlenschutz BfU, Naturschutz, Bau und Reaktorsicherheit. Umweltradioaktivität und Strahlenbelastung: Jahresbericht 2015. http://nbn-resolving.de/urn:nbn:de:0221–2017072814305 (last accessed on 31.08.2017)
  • 3 Nekolla EA, Schegerer AA, Griebel J. et al. Frequency and doses of diagnostic and interventional Xray applications : Trends between 2007 and 2014. Der Radiologe 2017; 57: 555-562
  • 4 Berrington de Gonzalez A, Mahesh M, Kim KP. et al. Projected cancer risks from computed tomographic scans performed in the United States in 2007. Archives of internal medicine 2009; 169: 2071-2077
  • 5 Smith-Bindman R, Lipson J, Marcus R. et al. Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer. Archives of internal medicine 2009; 169: 2078-2086
  • 6 Brenner DJ, Hall EJ. Computed tomography--an increasing source of radiation exposure. The New England journal of medicine 2007; 357: 2277-2284
  • 7 Hendee WR. Policy statement of the International Organization for Medical Physics. Radiology 2013; 267: 326-327
  • 8 Protection ICoR: The 2007 Recommendations of the International Commission on Radiological Protection. ICRP publication 103. Annals of the ICRP 2007; 37: 1-332
  • 9 Hendee WR, O’Connor MK. Radiation risks of medical imaging: separating fact from fantasy. Radiology 2012; 264: 312-321
  • 10 McCollough CH. The Role of the Medical Physicist in Managing Radiation Dose and Communicating Risk in CT. Am J Roentgenol 2016; 206: 1241-1244
  • 11 Verordnung über den Schutz vor Schäden durch Röntgenstrahlen (Röntgenverordnung – RöV). http://www.gesetze-im-internet.de/r_v_1987/R%C3%B6V.pdf (last accessed on 31.08.2017)
  • 12 Gesetz zur Neuordnung des Rechts zum Schutz vor der schädlichen Wirkung ionisierender Strahlung. http://www.bmub.bund.de/fileadmin/Daten_BMU/Download_PDF/Strahlenschutz/neuordnung_wirkung_ionisierender_strahlung.pdf (last accessed on 31.08.2017)
  • 13 Mayo-Smith WW, Hara AK, Mahesh M. et al. How I do it: managing radiation dose in CT. Radiology 2014; 273: 657-672
  • 14 Afat S, Pjontek R, Hamou HA. et al. Imaging of Ventriculoperitoneal Shunt Complications: Comparison of Whole Body Low-Dose Computed Tomography and Radiographic Shunt Series. Journal of computer assisted tomography 2016; 40: 991-996
  • 15 Soderberg M. Overview, practical tips and potential pitfalls of using automatic exposure control in CT: Siemens CARE Dose 4D. Radiation protection dosimetry 2016; 169: 84-91
  • 16 Spearman JV, Schoepf UJ, Rottenkolber M. et al. Effect of Automated Attenuation-based Tube Voltage Selection on Radiation Dose at CT: An Observational Study on a Global Scale. Radiology 2016; 279: 167-174
  • 17 Mangold S, De Cecco CN, Schoepf UJ. et al. CT angiography for planning transcatheter aortic valve replacement using automated tube voltage selection: Image quality and radiation exposure. European journal of radiology 2017; 86: 276-283
  • 18 Mangold S, Wichmann JL, Schoepf UJ. et al. Automated tube voltage selection for radiation dose and contrast medium reduction at coronary CT angiography using 3(rd) generation dual-source CT. European radiology 2016; 26: 3608-3616
  • 19 Sun J, Yu T, Liu J. et al. Image quality improvement using model-based iterative reconstruction in low dose chest CT for children with necrotizing pneumonia. BMC medical imaging 2017; 17: 24
  • 20 Andre F, Fortner P, Vembar M. et al. Improved image quality with simultaneously reduced radiation exposure: Knowledge-based iterative model reconstruction algorithms for coronary CT angiography in a clinical setting. Journal of cardiovascular computed tomography 2017; 11: 213-220
  • 21 Den HarderAM, Willemink MJ, De Ruiter QM. et al. Dose reduction with iterative reconstruction for coronary CT angiography: a systematic review and meta-analysis. The British journal of radiology 2016; 89: 20150068
  • 22 Othman AE, Afat S, Brockmann MA. et al. Radiation dose reduction in perfusion CT imaging of the brain: A review of the literature. Journal of neuroradiology Journal de neuroradiologie 2016; 43: 1-5
  • 23 Othman AE, Brockmann C, Yang Z. et al. Impact of image denoising on image quality, quantitative parameters and sensitivity of ultra-low-dose volume perfusion CT imaging. European radiology 2016; 26: 167-174
  • 24 Strahlenschutz Bf: Bekanntmachung der aktualisierten diagnostischen Referenzwerte für diagnostische und interventionelle Röntgenanwendungen. BAnz AT Bundesamt für Strahlenschutz 2016
  • 25 Parakh A, Kortesniemi M, Schindera ST. CT Radiation Dose Management: A Comprehensive Optimization Process for Improving Patient Safety. Radiology 2016; 280: 663-673
  • 26 Boos J, Meineke A, Bethge OT. et al. Dose Monitoring in Radiology Departments: Status Quo and Future Perspectives. RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin 2016; 188: 443-450
  • 27 Kalra MK, Maher MM, Toth TL. et al. Strategies for CT radiation dose optimization. Radiology 2004; 230: 619-628
  • 28 McNitt-Gray MF. AAPM/RSNA Physics Tutorial for Residents: Topics in CT. Radiation dose in CT. Radiographics: a review publication of the Radiological Society of North America, Inc 2002; 22: 1541-1553
  • 29 Schilham A, van der Molen AJ, Prokop M. et al. Overranging at multisection CT: an underestimated source of excess radiation exposure. Radiographics : a review publication of the Radiological Society of North America, Inc 2010; 30: 1057-1067
  • 30 McCollough CH, Leng S, Yu L. et al. CT dose index and patient dose: they are not the same thing. Radiology 2011; 259: 311-316
  • 31 Huda W, Mettler FA. Volume CT dose index and dose-length product displayed during CT: what good are they?. Radiology 2011; 258: 236-242
  • 32 Brink JA, Morin RL. Size-specific dose estimation for CT: how should it be used and what does it mean?. Radiology 2012; 265: 666-668
  • 33 Medicine AAoPi. Size-specific dose estimates (SSDE) in pediatric and adult body CT Examinations: Report of AAPM Task Group 204. College Park: Md: American Association of Physicists in Medicine; 2011
  • 34 Medicine AAoPi. Use of Water Equivalent Diameter for Calculating Patient Size and Size-Specific Dose Estimates (SSDE) in CT: The Report of AAPM Task Group 220. College Park, Md: American Association of Physicists in Medicine; 2014
  • 35 Kalra MK, Sodickson AD, Mayo-Smith WW. CT Radiation: Key Concepts for Gentle and Wise Use. Radiographics : a review publication of the Radiological Society of North America, Inc 2015 35: 1706-1721
  • 36 Othman A, Hamou HA, Pjontek R. et al. Evaluation of whole body Ultralow-Dose CT for the assessment of ventriculoperitoneal shunt complications: an experimental ex-vivo study in a swine model. European radiology 2015; 25: 2199-2204
  • 37 Othman AE, Afat S, Hamou HA. et al. High-Pitch Low-Dose Whole-Body Computed Tomography for the Assessment of Ventriculoperitoneal Shunts in a Pediatric Patient Model: An Experimental Ex Vivo Study in Rabbits. Investigative radiology 2015; 50: 858-862
  • 38 Wilting JE, Zwartkruis A, van Leeuwen MS. et al. A rational approach to dose reduction in CT: individualized scan protocols. European radiology 2001; 11: 2627-2632
  • 39 Li J, Udayasankar UK, Toth TL. et al. Automatic patient centering for MDCT: effect on radiation dose. American journal of roentgenology 2007; 188: 547-552
  • 40 Kaasalainen T, Palmu K, Reijonen V. et al. Effect of patient centering on patient dose and image noise in chest CT. American journal of roentgenology 2014; 203: 123-130
  • 41 Toth T, Ge Z, Daly MP. The influence of patient centering on CT dose and image noise. Medical physics 2007; 34: 3093-3101
  • 42 Lee CH, Goo JM, Ye HJ. et al. Radiation dose modulation techniques in the multidetector CT era: from basics to practice. Radiographics : a review publication of the Radiological Society of North America, Inc 2008; 28: 1451-1459
  • 43 Bang DH, Lim D, Hwang WS. et al. Lateral topography for reducing effective dose in low-dose chest CT. Am J Roentgenol American journal of roentgenology 2013; 200: 1294-1297
  • 44 Maldjian PD, Goldman AR. Reducing radiation dose in body CT: a primer on dose metrics and key CT technical parameters. American journal of roentgenology 2013; 200: 741-747
  • 45 McCollough CH, Bruesewitz MR, Kofler Jr JM. CT dose reduction and dose management tools: overview of available options. Radiographics : a review publication of the Radiological Society of North America, Inc 2006; 26: 503-512
  • 46 Kaza RK, Platt JF, Goodsitt MM. et al. Emerging techniques for dose optimization in abdominal CT. Radiographics : a review publication of the Radiological Society of North America, Inc 2014; 34: 4-17
  • 47 Kalra MK, Maher MM, Toth TL. et al. Techniques and applications of automatic tube current modulation for CT. Radiology 2004; 233: 649-657
  • 48 Soderberg M, Gunnarsson M. Automatic exposure control in computed tomography--an evaluation of systems from different manufacturers. Acta radiologica (Stockholm, Sweden : 1987) 2010; 51: 625-634
  • 49 Mulkens TH, Bellinck P, Baeyaert M. et al. Use of an automatic exposure control mechanism for dose optimization in multi-detector row CT examinations: clinical evaluation. Radiology 2005; 237: 213-223
  • 50 Seyal AR, Arslanoglu A, Abboud SF. et al. CT of the Abdomen with Reduced Tube Voltage in Adults: A Practical Approach. Radiographics : a review publication of the Radiological Society of North America, Inc 2015; 35: 1922-1939
  • 51 Lira D, Padole A, Kalra MK. et al. Tube potential and CT radiation dose optimization. American journal of roentgenology 2015; 204: W4-W10
  • 52 Gonzalez-Guindalini FD, Ferreira BotelhoMP, Tore HG. et al. MDCT of chest, abdomen, and pelvis using attenuation-based automated tube voltage selection in combination with iterative reconstruction: an intrapatient study of radiation dose and image quality. American journal of roentgenology 2013; 201: 1075-1082
  • 53 Lee KH, Lee JM, Moon SK. et al. Attenuation-based automatic tube voltage selection and tube current modulation for dose reduction at contrast-enhanced liver CT. Radiology 2012; 265: 437-447
  • 54 Siegel MJ, Ramirez-Giraldo JC, Hildebolt C. et al. Automated low-kilovoltage selection in pediatric computed tomography angiography: phantom study evaluating effects on radiation dose and image quality. Investigative radiology 2013; 48: 584-589
  • 55 Siegel MJ, Hildebolt C, Bradley D. Effects of automated kilovoltage selection technology on contrast-enhanced pediatric CT and CT angiography. Radiology 2013; 268: 538-547
  • 56 Geyer LL, Schoepf UJ, Meinel FG. et al. State of the Art: Iterative CT Reconstruction Techniques. Radiology 2015; 276: 339-357
  • 57 Willemink MJ, de Jong PA, Leiner T. et al. Iterative reconstruction techniques for computed tomography Part 1: technical principles. European radiology 2013; 23: 1623-1631
  • 58 Beister M, Kolditz D, Kalender WA. Iterative reconstruction methods in X-ray CT. Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB) 2012; 28: 94-108
  • 59 Kalra MK, Woisetschlager M, Dahlstrom N. et al. Radiation dose reduction with Sinogram Affirmed Iterative Reconstruction technique for abdominal computed tomography. Journal of computer assisted tomography 2012; 36: 339-346
  • 60 Willemink MJ, Leiner T, de Jong PA. et al. Iterative reconstruction techniques for computed tomography part 2: initial results in dose reduction and image quality. European radiology 2013; 23: 1632-1642
  • 61 McCollough CH, Yu L, Kofler JM. et al. Degradation of CT Low-Contrast Spatial Resolution Due to the Use of Iterative Reconstruction and Reduced Dose Levels. Radiology 2015; 276: 499-506
  • 62 Won KimC, Kim JH. Realistic simulation of reduced-dose CT with noise modeling and sinogram synthesis using DICOM CT images. Medical physics 2014; 41: 011901
  • 63 Othman AE, Brockmann C, Yang Z. et al. Effects of radiation dose reduction in Volume Perfusion CT imaging of acute ischemic stroke. European radiology 2015; 25: 3415-3422
  • 64 Othman AE, Afat S, Brockmann C. et al. Low-Dose Volume-Perfusion CT of the Brain: Effects of Radiation Dose Reduction on Performance of Perfusion CT Algorithms. Clinical neuroradiology 2015; 27: 311-318
  • 65 Schegerer AA, Nagel H-D, Stamm G. et al. Current CT Practice in Germany: Results and Implications of a Nationwide Survey. European journal of radiology 2017; 90: 114-128
  • 66 Dosis-Management – Die wichtigsten Systeme im Überblick. http://www.radiologieforum.de/uploads/Magazine/epaper-Strada-2016/page41.html#/40 (last accessed on 22.03. 2017)
  • 67 MacGregor K, Li I, Dowdell T. et al. Identifying Institutional Diagnostic Reference Levels for CT with Radiation Dose Index Monitoring Software. Radiology 2015; 276: 507-517
  • 68 Smith-Bindman R, Moghadassi M, Wilson N. et al. Radiation Doses in Consecutive CT Examinations from Five University of California Medical Centers. Radiology 2015; 277: 134-141
  • 69 Radiology ESo. Summary of the European Directive 2013/59/Euratom: essentials for health professionals in radiology. Insights into imaging 2015; 6: 411-417