CC BY-NC-ND 4.0 · Arquivos Brasileiros de Neurocirurgia: Brazilian Neurosurgery 2024; 43(01): e48-e56
DOI: 10.1055/s-0044-1779743
Review Article

Usefulness of Intraoperative Infrared Thermography in Intracranial Surgeries: Past, Present, and Future

Utilidade da termografia infravermelho em cirurgias intracranianas: Passado, presente e futuro
1   Division of Neurosurgery, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
Vinícius Verbicário Botelho da Costa
1   Division of Neurosurgery, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
Caio Araujo de Souza
1   Division of Neurosurgery, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
Diego Rodrigues Menezes
2   Postgraduation Program in Neurology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
Marcus Andre Acioly
1   Division of Neurosurgery, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
2   Postgraduation Program in Neurology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
3   Division of Neurosurgery, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
› Author Affiliations


With the advancement of technology in Neurosurgery, imaging guidance for surgical planning and intraoperative assessment has become relevant. Currently, two major methods of imaging guidance are generally explored in the literature, namely based on imaging and fluorescence. These techniques, however, are not without limitations. Thermal imaging has potentially broad applications in clinical practice, especially for intracranial diseases. Infrared thermography (IT) has been an underestimated tool with few reports on its usefulness during intracranial surgeries. In this article, we aim to provide a brief discussion on the limitations of current intraoperative imaging techniques for intracranial surgeries and to provide an in-depth state-of-the-art review on intraoperative IT (IIT) for intracranial lesions. High-resolution IIT is a non-invasive alternative imaging method that provides real-time estimation of regional cerebral blood flow. For brain tumors, the studies were mostly directed to diagnostic purposes and occasionally for lesion-localization. The use of IIT to address the extent of resection is a potential new application. Clinical data in this issue suggests that IIT might detect residual tumors, occasionally not assessed by other imaging technologies. Thermographic measurements during vascular and epilepsy surgeries comprise an interesting field for future research with potential clinical implications. Further experimental and clinical studies should be addressed to provide technical refinements and verify the usefulness of this noninvasive technology in neurosurgery.


Com o avanço da tecnologia em neurocirurgia, a orientação do planejamento cirúrgico e da avaliação intraoperatória por métodos de imagem se tornaram extremamente relevantes. Atualmente, dois métodos principais de cirurgia guiada por imagem são geralmente explorados na literatura, ou seja, baseados em imagens e em fluorescência. Essas técnicas, no entanto, apresentam limitações. A termografia infravermelha (TI) tem aplicações potencialmente amplas na prática clínica, especialmente para doenças intracranianas. A TI tem sido uma ferramenta subestimada, com poucos relatos sobre a sua utilidade durante cirurgias intracranianas. Neste artigo, pretendemos fornecer uma breve discussão sobre as limitações das atuais técnicas de imagem intraoperatória para cirurgias intracranianas e fornecer uma revisão aprofundada do estado da arte sobre a TI intraoperatória (TII) para lesões intracranianas. A TII de alta resolução é um método de imagem alternativo não invasivo que fornece estimativa em tempo real do fluxo sanguíneo cerebral regional. Para tumores cerebrais, os estudos foram direcionados principalmente para fins diagnósticos e, ocasionalmente, para localização das lesões. O uso da TII para avaliar a extensão da ressecção é uma nova aplicação em potencial. Os dados clínicos sugerem que a TII pode detectar tumores residuais, ocasionalmente não avaliados por outras tecnologias de imagem. Medidas termográficas durante cirurgias vasculares e de epilepsia constituem um campo interessante para pesquisas futuras com potenciais implicações clínicas. Novos estudos experimentais e clínicos devem ser realizados para fornecer refinamentos técnicos e verificar a utilidade dessa tecnologia não invasiva em neurocirurgia.

Publication History

Received: 18 May 2023

Accepted: 26 January 2024

Article published online:
28 February 2024

© 2024. Sociedade Brasileira de Neurocirurgia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

  • References

  • 1 Meola C, Carlomagno GM. Recent advances in the use of infrared thermography. Meas Sci Technol 2004; 15 (09) R27-R58
  • 2 Francis Ring EJ. History of Thermology and Thermography: Pioneers and Progress. Vol. 22.. 2012
  • 3 Lawson RN. A new infrared imaging device. Can Med Assoc J 1958; 79 (05) 402-403
  • 4 Goldson AL. Cancer Management in Man: Detection, Diagnosis, Surgery, Radiology, Chronobiology, Endocrine Therapy. Springer Netherlands: 1989: 292
  • 5 Kateb B, Yamamoto V, Yu C, Grundfest W, Gruen JP. Infrared thermal imaging: a review of the literature and case report. Neuroimage 2009; 47 (Suppl. 02) T154-T162
  • 6 Lahiri BB, Bagavathiappan S, Jayakumar T, Philip J. Medical applications of infrared thermography: A review. Infrared Phys Technol 2012; 55 (04) 221-235
  • 7 Silva LF, Santos AASMD, Bravo RS, Silva AC, Muchaluat-Saade DC, Conci A. Hybrid analysis for indicating patients with breast cancer using temperature time series. Comput Methods Programs Biomed 2016; 130: 142-153
  • 8 Schlageter KE, Molnar P, Lapin GD, Groothuis DR. Microvessel organization and structure in experimental brain tumors: microvessel populations with distinctive structural and functional properties. Microvasc Res 1999; 58 (03) 312-328
  • 9 Ecker RD, Goerss SJ, Meyer FB, Cohen-Gadol AA, Britton JW, Levine JA. Vision of the future: initial experience with intraoperative real-time high-resolution dynamic infrared imaging. Technical note. J Neurosurg 2002; 97 (06) 1460-1471
  • 10 Hossman KA, Blöink M. Blood flow and regulation of blood flow in experimental peritumoral edema. Stroke 1981; 12 (02) 211-217
  • 11 DeLaPaz RL, Patronas NJ, Brooks RA. et al. Positron emission tomographic study of suppression of gray-matter glucose utilization by brain tumors. AJNR Am J Neuroradiol 1983; 4 (03) 826-829
  • 12 Kastek M, Piatkowski T, Polakowski H. et al. Intraoperative application of thermal camera for the assessment of during surgical resection or biopsy of human's brain tumors. In: Colbert FP. Hsieh SJ (Tony), eds. 2014: 910508
  • 13 Koga H, Mori K, Ono H, Kuwahara M, Matsuse E. [Intraoperative regional thermography during surgery of brain tumors]. Neurol Med Chir (Tokyo) 1987; 27 (11) 1033-1038
  • 14 Gorbach AM, Heiss J, Kufta C. et al. Intraoperative infrared functional imaging of human brain. Ann Neurol 2003; 54 (03) 297-309
  • 15 Gorbach AM, Heiss JD, Kopylev L, Oldfield EH. Intraoperative infrared imaging of brain tumors. J Neurosurg 2004; 101 (06) 960-969
  • 16 Watson JC, Gorbach AM, Pluta RM, Rak R, Heiss JD, Oldfield EH. Real-time detection of vascular occlusion and reperfusion of the brain during surgery by using infrared imaging. J Neurosurg 2002; 96 (05) 918-923
  • 17 Naydenov E, Minkin K, Penkov M, Nachev S, Stummer W. Infrared Thermography in Surgery of Newly Diagnosed Glioblastoma Multiforme: A Technical Case Report. Case Rep Oncol 2017; 10 (01) 350-355
  • 18 Hatiboglu MA, Akdur K, Sawaya R. Neurosurgical management of patients with brain metastasis. Neurosurg Rev 2020; 43 (02) 483-495
  • 19 Hatiboglu MA, Wildrick DM, Sawaya R. The role of surgical resection in patients with brain metastases. Ecancermedicalscience 2013; 7: 308
  • 20 Senft C, Bink A, Franz K, Vatter H, Gasser T, Seifert V. Intraoperative MRI guidance and extent of resection in glioma surgery: a randomised, controlled trial. Lancet Oncol 2011; 12 (11) 997-1003
  • 21 Barone DG, Lawrie TA, Hart MG. Image guided surgery for the resection of brain tumours. Cochrane Database Syst Rev 2014; 2014 (01) CD009685
  • 22 Falco J, Cavallo C, Vetrano IG. et al. Fluorescein Application in Cranial and Spinal Tumors Enhancing at Preoperative MRI and Operated With a Dedicated Filter on the Surgical Microscope: Preliminary Results in 279 Patients Enrolled in the FLUOCERTUM Prospective Study. Front Surg 2019; 6: 49
  • 23 Orillac C, Stummer W, Orringer DA. Fluorescence Guidance and Intraoperative Adjuvants to Maximize Extent of Resection. Neurosurgery 2021; 89 (05) 727-736
  • 24 Nimsky C, Ganslandt O, Hastreiter P, Fahlbusch R. Intraoperative compensation for brain shift. Surg Neurol 2001; 56 (06) 357-364 , discussion 364–365
  • 25 Samset E, Hirschberg H. Neuronavigation in intraoperative MRI. Comput Aided Surg 1999; 4 (04) 200-207
  • 26 Mahboob S, McPhillips R, Qiu Z. et al. Intraoperative Ultrasound-Guided Resection of Gliomas: A Meta-Analysis and Review of the Literature. World Neurosurg 2016; 92: 255-263
  • 27 Ogiwara T, Goto T, Aoyama T, Nagm A, Yamamoto Y, Hongo K. Bony surface registration of navigation system in the lateral or prone position: technical note. Acta Neurochir (Wien) 2015; 157 (11) 2017-2022
  • 28 Johnston T, Moser R, Moeller K, Moriarty TM. Intraoperative MRI: safety. Neurosurg Clin N Am 2009; 20 (02) 147-153
  • 29 Ma J, Cheng L, Wang G, Lin S. Surgical management of meningioma of the trigone area of the lateral ventricle. World Neurosurg 2014; 82 (05) 757-769
  • 30 Petridis AK, Anokhin M, Vavruska J, Mahvash M, Scholz M. The value of intraoperative sonography in low grade glioma surgery. Clin Neurol Neurosurg 2015; 131: 64-68
  • 31 Selbekk T, Jakola AS, Solheim O. et al. Ultrasound imaging in neurosurgery: approaches to minimize surgically induced image artefacts for improved resection control. Acta Neurochir (Wien) 2013; 155 (06) 973-980
  • 32 Lu VH, Ho IV, Lee V, Hunyor AP. Complications from fluorescein angiography: a prospective study. Clin Exp Ophthalmol 2009; 37 (08) 826-827
  • 33 Valdés PA, Jacobs V, Harris BT. et al. Quantitative fluorescence using 5-aminolevulinic acid-induced protoporphyrin IX biomarker as a surgical adjunct in low-grade glioma surgery. J Neurosurg 2015; 123 (03) 771-780
  • 34 Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen HJ. ALA-Glioma Study Group. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 2006; 7 (05) 392-401
  • 35 Catapano G, Sgulò FG, Seneca V, Lepore G, Columbano L, di Nuzzo G. Fluorescein-Guided Surgery for High-Grade Glioma Resection: An Intraoperative “Contrast-Enhancer”. World Neurosurg 2017; 104: 239-247
  • 36 Almekkawi AK, El Ahmadieh TY, Wu EM. et al. The Use of 5-Aminolevulinic Acid in Low-Grade Glioma Resection: A Systematic Review. Oper Neurosurg (Hagerstown) 2020; 19 (01) 1-8
  • 37 Okudera; Kobayashi; Toriyama. Intraoperative Regional and Functional Thermography during Resection of Cerebral Arteriovenous Malformation Technical Report [Internet]. Vol. 34, Neurosurgery. 1992. Available from:
  • 38 Nakagawa A, Fujimura M, Arafune T, Sakuma I, Tominaga T. Clinical implications of intraoperative infrared brain surface monitoring during superficial temporal artery-middle cerebral artery anastomosis in patients with moyamoya disease. J Neurosurg 2009; 111 (06) 1158-1164
  • 39 Kawamata T, Kawashima A, Yamaguchi K, Hori T, Okada Y. Usefulness of intraoperative laser Doppler flowmetry and thermography to predict a risk of postoperative hyperperfusion after superficial temporal artery-middle cerebral artery bypass for moyamoya disease. Neurosurg Rev 2011; 34 (03) 355-362 , discussion 362
  • 40 Hwang PYK, Lewis PM, Maller JJ. Use of intracranial and ocular thermography before and after arteriovenous malformation excision. J Biomed Opt 2014; 19 (11) 110503