Semin Thromb Hemost
DOI: 10.1055/s-0044-1786807
Review Article

Thrombophilia Screening: Not So Straightforward

Gary W. Moore
1   Specialist Haemostasis Laboratory, Cambridge Haemophilia and Thrombophilia Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
2   Department of Natural Sciences, Middlesex University, London, United Kingdom
› Author Affiliations

Abstract

Although inherited thrombophilias are lifelong risk factors for a first thrombotic episode, progression to thrombosis is multifactorial and not all individuals with inherited thrombophilia develop thrombosis in their lifetimes. Consequently, indiscriminate screening in patients with idiopathic thrombosis is not recommended, since presence of a thrombophilia does not necessarily predict recurrence or influence management, and testing should be selective. It follows that a decision to undertake laboratory detection of thrombophilia should be aligned with a concerted effort to identify any significant abnormalities, because it will inform patient management. Deficiencies of antithrombin and protein C are rare and usually determined using phenotypic assays assessing biological activities, whereas protein S deficiency (also rare) is commonly detected with antigenic assays for the free form of protein S since available activity assays are considered to lack specificity. In each case, no single phenotypic assay is capable of detecting every deficiency, because the various mutations express different molecular characteristics, rendering thrombophilia screening repertoires employing one assay per potential deficiency, of limited effectiveness. Activated protein C resistance (APCR) is more common than discrete deficiencies of antithrombin, protein C, and protein S and also often detected initially with phenotypic assays; however, some centres perform only genetic analysis for factor V Leiden, as this is responsible for most cases of hereditary APCR, accepting that acquired APCR and rare F5 mutations conferring APCR will go undetected if only factor V Leiden is evaluated. All phenotypic assays have interferences and limitations, which must be factored into decisions about if, and when, to test, and be given consideration in the laboratory during assay performance and interpretation. This review looks in detail at performance and limitations of routine phenotypic thrombophilia assays.



Publication History

Article published online:
11 May 2024

© 2024. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Colucci G, Tsakiris DA. Thrombophilia screening revisited: an issue of personalized medicine. J Thromb Thrombolysis 2020; 49 (04) 618-629
  • 2 Colucci G, Tsakiris DA. Thrombophilia screening: universal, selected, or neither?. Clin Appl Thromb Hemost 2017; 23 (08) 893-899
  • 3 Srivastava A, Brewer AK, Mauser-Bunschoten EP. et al; Treatment Guidelines Working Group on Behalf of The World Federation Of Hemophilia. Guidelines for the management of hemophilia. Haemophilia 2013; 19 (01) e1-e47
  • 4 Heit JA. Thrombophilia: common questions on laboratory assessment and management. Hematology (Am Soc Hematol Educ Program) 2007; 2007: 127-135
  • 5 Dahlbäck B. Advances in understanding pathogenic mechanisms of thrombophilic disorders. Blood 2008; 112 (01) 19-27
  • 6 Zöller B, Svensson PJ, Dahlbäck B, Lind-Hallden C, Hallden C, Elf J. Genetic risk factors for venous thromboembolism. Expert Rev Hematol 2020; 13 (09) 971-981
  • 7 Arachchillage DJ, Mackillop L, Chandratheva A, Motawani J, MacCallum P, Laffan M. Thrombophilia testing: a British Society for Haematology guideline. Br J Haematol 2022; 198 (03) 443-458
  • 8 Mannucci PM, Franchini M. Classic thrombophilic gene variants. Thromb Haemost 2015; 114 (05) 885-889
  • 9 Van Cott EM, Khor B, Zehnder JL, Factor V. Factor V Leiden. Am J Hematol 2016; 91 (01) 46-49
  • 10 Rolla R, Pergolini P, Vidali M. et al. Routine coagulation tests are not useful as a screening tool for the FII G20210A polymorphism. Clin Lab 2014; 60 (10) 1725-1733
  • 11 Nicolaes GA, Dahlbäck B. Activated protein C resistance (FV(Leiden)) and thrombosis: factor V mutations causing hypercoagulable states. Hematol Oncol Clin North Am 2003; 17 (01) 37-61 , vi
  • 12 Kujovich JL, Factor V. Factor V Leiden thrombophilia. Genet Med 2011; 13 (01) 1-16
  • 13 Middeldorp S, Nieuwlaat R, Baumann Kreuziger L. et al. American Society of Hematology 2023 guidelines for management of venous thromboembolism: thrombophilia testing. Blood Adv 2023; 7 (22) 7101-7138
  • 14 Kudo M, Lee HL, Yang IA, Masel PJ. Utility of thrombophilia testing in patients with venous thrombo-embolism. J Thorac Dis 2016; 8 (12) 3697-3703
  • 15 Connors JM. Thrombophilia testing and venous thrombosis. N Engl J Med 2017; 377 (12) 1177-1187
  • 16 De Stefano V, Rossi E. Testing for inherited thrombophilia and consequences for antithrombotic prophylaxis in patients with venous thromboembolism and their relatives. A review of the Guidelines from Scientific Societies and Working Groups. Thromb Haemost 2013; 110 (04) 697-705
  • 17 Stevens SM, Woller SC, Bauer KA. et al. Guidance for the evaluation and treatment of hereditary and acquired thrombophilia. J Thromb Thrombolysis 2016; 41 (01) 154-164
  • 18 MacCallum P, Bowles L, Keeling D. Diagnosis and management of heritable thrombophilias. BMJ 2014; 349: g4387
  • 19 Middeldorp S. Inherited thrombophilia: a double-edged sword. Hematology (Am Soc Hematol Educ Program) 2016; 2016 (01) 1-9
  • 20 Franchini M. The utility of thrombophilia testing. Clin Chem Lab Med 2014; 52 (04) 495-497
  • 21 Fell C, Ivanovic N, Johnson SA, Seegers WH. Differentiation of plasma antithrombin activities. Proc Soc Exp Biol Med 1954; 85 (02) 199-202
  • 22 Kottke-Marchant K, Duncan A. Antithrombin deficiency: issues in laboratory diagnosis. Arch Pathol Lab Med 2002; 126 (11) 1326-1336
  • 23 Rezaie AR, Giri H. Anticoagulant and signaling functions of antithrombin. J Thromb Haemost 2020; 18 (12) 3142-3153
  • 24 Muszbek L, Bereczky Z, Kovács B, Komáromi I. Antithrombin deficiency and its laboratory diagnosis. Clin Chem Lab Med 2010; 48 (Suppl. 01) S67-S78
  • 25 Pabinger I, Thaler J. How I treat patients with hereditary antithrombin deficiency. Blood 2019; 134 (26) 2346-2353
  • 26 Law RH, Zhang Q, McGowan S. et al. An overview of the serpin superfamily. Genome Biol 2006; 7 (05) 216
  • 27 Opal SM, Kessler CM, Roemisch J, Knaub S. Antithrombin, heparin, and heparan sulfate. Crit Care Med 2002; 30 (5, Suppl): S325-S331
  • 28 Jin L, Abrahams JP, Skinner R, Petitou M, Pike RN, Carrell RW. The anticoagulant activation of antithrombin by heparin. Proc Natl Acad Sci U S A 1997; 94 (26) 14683-14688
  • 29 Liu J, Pedersen LC. Anticoagulant heparan sulfate: structural specificity and biosynthesis. Appl Microbiol Biotechnol 2007; 74 (02) 263-272
  • 30 Swedenborg J. The mechanisms of action of alpha- and beta-isoforms of antithrombin. Blood Coagul Fibrinolysis 1998; 9 (Suppl. 03) S7-S10
  • 31 Teitel JM, Rosenberg RD. Protection of factor Xa from neutralization by the heparin-antithrombin complex. J Clin Invest 1983; 71 (05) 1383-1391
  • 32 Weitz JI. Heparan sulfate: antithrombotic or not?. J Clin Invest 2003; 111 (07) 952-954
  • 33 Egeberg O. Thrombophilia caused by inheritable deficiency of blood antithrombin. Scand J Clin Lab Invest 1965; 17: 92
  • 34 Bravo-Pérez C, de la Morena-Barrio ME, Vicente V, Corral J. Antithrombin deficiency as a still underdiagnosed thrombophilia: a primer for internists. Pol Arch Intern Med 2020; 130 (10) 868-877
  • 35 Alhenc-Gelas M, Plu-Bureau G, Hugon-Rodin J, Picard V, Horellou MH. GFHT study group on Genetic Thrombophilia. Thrombotic risk according to SERPINC1 genotype in a large cohort of subjects with antithrombin inherited deficiency. Thromb Haemost 2017; 117 (06) 1040-1051
  • 36 Patnaik MM, Moll S. Inherited antithrombin deficiency: a review. Haemophilia 2008; 14 (06) 1229-1239
  • 37 Corral J, de la Morena-Barrio ME, Vicente V. The genetics of antithrombin. Thromb Res 2018; 169: 23-29
  • 38 Brown SA, Mitchell M, Cutler JA, Moore G, Smith MP, Savidge GF. Rapid genetic diagnosis in neonatal pulmonary artery thrombosis caused by homozygous antithrombin Budapest 3. Clin Appl Thromb Hemost 2000; 6 (03) 181-183
  • 39 Van Cott EM, Orlando C, Moore GW, Cooper PC, Meijer P, Marlar R. Subcommittee on Plasma Coagulation Inhibitors. Recommendations for clinical laboratory testing for antithrombin deficiency; communication from the SSC of the ISTH. J Thromb Haemost 2020; 18 (01) 17-22
  • 40 Cooper PC, Coath F, Daly ME, Makris M. The phenotypic and genetic assessment of antithrombin deficiency. Int J Lab Hematol 2011; 33 (03) 227-237
  • 41 Kovács B, Bereczky Z, Oláh Z. et al. The superiority of anti-FXa assay over anti-FIIa assay in detecting heparin-binding site antithrombin deficiency. Am J Clin Pathol 2013; 140 (05) 675-679
  • 42 Moser KA, Smock KJ. Direct oral anticoagulant (DOAC) interference in hemostasis assays. Hematology (Am Soc Hematol Educ Program) 2021; 2021 (01) 129-133
  • 43 Smogorzewska A, Brandt JT, Chandler WL. et al. Effect of fondaparinux on coagulation assays: results of College of American Pathologists proficiency testing. Arch Pathol Lab Med 2006; 130 (11) 1605-1611
  • 44 Van Blerk M, Bailleul E, Chatelain B. et al. Influence of dabigatran and rivaroxaban on routine coagulation assays. A nationwide Belgian survey. Thromb Haemost 2015; 113 (01) 154-164
  • 45 Favresse J, Lardinois B, Sabor L. et al. Evaluation of the DOAC-Stop® procedure to overcome the effect of DOACs on several thrombophilia screening tests. TH Open 2018; 2 (02) e202-e209
  • 46 Antovic J, Söderström J, Karlman B, Blombäck M. Evaluation of a new immunoturbidimetric test (Liatest antithrombin III) for determination of antithrombin antigen. Clin Lab Haematol 2001; 23 (05) 313-316
  • 47 Heit JA. Thrombophilia: clinical and laboratory assessment and management. In: Kitchens CS, Alving BM, Kessler CM. eds. Consultative Hemostasis and Thrombosis. 2nd ed.. Philadelphia: Saunders; 2007: 213-244
  • 48 Kovács B, Bereczky Z, Selmeczi A. et al. Progressive chromogenic anti-factor Xa assay and its use in the classification of antithrombin deficiencies. Clin Chem Lab Med 2014; 52 (12) 1797-1806
  • 49 Chowdhury V, Mille B, Olds RJ. et al. Antithrombins Southport (Leu 99 to Val) and Vienna (Gln 118 to Pro): two novel antithrombin variants with abnormal heparin binding. Br J Haematol 1995; 89 (03) 602-609
  • 50 Moore GW, de Jager N, Cutler JA. Development of a novel, rapid assay for detection of heparin-binding defect antithrombin deficiencies: the heparin-antithrombin binding (HAB) ratio. Thromb Res 2015; 135 (01) 161-166
  • 51 Corral J, Hernandez-Espinosa D, Soria JM. et al. Antithrombin Cambridge II (A384S): an underestimated genetic risk factor for venous thrombosis. Blood 2007; 109 (10) 4258-4263
  • 52 Perry DJ, Daly ME, Tait RC. et al. Antithrombin Cambridge II (Ala384Ser): clinical, functional and haplotype analysis of 18 families. Thromb Haemost 1998; 79 (02) 249-253
  • 53 Olson ST, Stephens AW, Hirs CH, Bock PE, Björk I. Kinetic characterization of the proteinase binding defect in a reactive site variant of the serpin, antithrombin. Role of the P1′ residue in transition-state stabilization of antithrombin-proteinase complex formation. J Biol Chem 1995; 270 (17) 9717-9724
  • 54 Ungerstedt JS, Schulman S, Egberg N, Antovic J, Blombäck N. Discrepancy between antithrombin activity methods revealed in antithrombin Stockholm: do factor Xa-based methods overestimate antithrombin activity in some patients?. Blood 2002; 99 (06) 2271-2272
  • 55 Lane DA, Lowe GD, Flynn A, Thompson E, Ireland H, Erdjument H. Antithrombin III Glasgow: a variant with increased heparin affinity and reduced ability to inactivate thrombin, associated with familial thrombosis. Br J Haematol 1987; 66 (04) 523-527
  • 56 Beauchamp NJ, Pike RN, Daly M. et al. Antithrombins Wibble and Wobble (T85M/K): archetypal conformational diseases with in vivo latent-transition, thrombosis, and heparin activation. Blood 1998; 92 (08) 2696-2706
  • 57 Bravo-Pérez C, de la Morena-Barrio ME, de la Morena-Barrio B. et al. Molecular and clinical characterization of transient antithrombin deficiency: a new concept in congenital thrombophilia. Am J Hematol 2022; 97 (02) 216-225
  • 58 Bruce D, Perry DJ, Borg JY, Carrell RW, Wardell MR. Thromboembolic disease due to thermolabile conformational changes of antithrombin Rouen-VI (187 Asn–>Asp). J Clin Invest 1994; 94 (06) 2265-2274
  • 59 Picard V, Bauters A, Khairy M. et al. Conformational Asn187Asp/Lys antithrombin variants and thrombosis. Clinical and biological features in 13 new heterozygotes. Thromb Haemost 2005; 93 (01) 57-62
  • 60 Navarro-Fernández J, de la Morena-Barrio ME, Padilla J. et al. Antithrombin Dublin (p.Val30Glu): a relatively common variant with moderate thrombosis risk of causing transient antithrombin deficiency. Thromb Haemost 2016; 116 (01) 146-154
  • 61 Weronska A, De la Morena-Barrio B, Goldman-Mazur S. et al. Functional, biochemical, molecular and clinical characterization of antithrombin c.1157T>C (p.Ile386Thr), a recurrent Polish variant with a founder effect. Haematologica 2023; 108 (10) 2803-2807
  • 62 de la Morena-Barrio ME, Suchon P, Jacobsen EM. et al. Two SERPINC1 variants affecting N-glycosylation of Asn224 cause severe thrombophilia not detected by functional assays. Blood 2022; 140 (02) 140-151
  • 63 Goldenberg NA, Manco-Johnson MJ. Protein C deficiency. Haemophilia 2008; 14 (06) 1214-1221
  • 64 Stenflo J. A new vitamin K-dependent protein. Purification from bovine plasma and preliminary characterization. J Biol Chem 1976; 251 (02) 355-363
  • 65 Dahlbäck B, Villoutreix BO. Regulation of blood coagulation by the protein C anticoagulant pathway: novel insights into structure-function relationships and molecular recognition. Arterioscler Thromb Vasc Biol 2005; 25 (07) 1311-1320
  • 66 Thiyagarajan M, Cheng T, Zlokovic BV. Endothelial cell protein C receptor: role beyond endothelium?. Circ Res 2007; 100 (02) 155-157
  • 67 Loghmani H, Conway EM. Exploring traditional and nontraditional roles for thrombomodulin. Blood 2018; 132 (02) 148-158
  • 68 Kottke-Marchant K, Comp P. Laboratory issues in diagnosing abnormalities of protein C, thrombomodulin, and endothelial cell protein C receptor. Arch Pathol Lab Med 2002; 126 (11) 1337-1348
  • 69 Nicolaes GA, Dahlbäck B. Factor V and thrombotic disease: description of a Janus-faced protein. Arterioscler Thromb Vasc Biol 2002; 22 (04) 530-538
  • 70 Dinarvand P, Moser KA, Protein C. Deficiency. Arch Pathol Lab Med 2019; 143 (10) 1281-1285
  • 71 Bahou WF. Thrombin's faces revealed: cellular effects include induction of neoangiogenesis. J Thromb Haemost 2003; 1 (10) 2078-2080
  • 72 MacMahon A. The realm of Janus: Doorways in the Roman World. In: Carr G, Swift E, Weekes J. eds. TRAC 2002: Proceedings of the Twelfth Annual Theoretical Roman Archaeology Conference, Canterbury 2002. Oxford: Oxbow Books; 2003: 58-73
  • 73 Suzuki K. The multi-functional serpin, protein C inhibitor: beyond thrombosis and hemostasis. J Thromb Haemost 2008; 6 (12) 2017-2026
  • 74 Marlar RA, Gausman JN. Laboratory testing issues for protein C, protein S, and antithrombin. Int J Lab Hematol 2014; 36 (03) 289-295
  • 75 Minford A, Brandão LR, Othman M. et al. Diagnosis and management of severe congenital protein C deficiency (SCPCD): communication from the SSC of the ISTH. J Thromb Haemost 2022; 20 (07) 1735-1743
  • 76 Tripodi A, Franchi F, Krachmalnicoff A, Mannucci PM. Asymptomatic homozygous protein C deficiency. Acta Haematol 1990; 83 (03) 152-155
  • 77 Shakoor MT, Ayub S, Ayub Z. Warfarin induced skin necrosis: a diagnostic challenge. MOJ Clin Med Case Rep 2017; 6: 21-22
  • 78 Khor B, Van Cott EM. Laboratory tests for protein C deficiency. Am J Hematol 2010; 85 (06) 440-442
  • 79 Cooper PC, Pavlova A, Moore GW, Hickey KP, Marlar RA. Recommendations for clinical laboratory testing for protein C deficiency, for the subcommittee on plasma coagulation inhibitors of the ISTH. J Thromb Haemost 2020; 18 (02) 271-277
  • 80 Moore GW. Snake venoms in diagnostic hemostasis and thrombosis. Semin Thromb Hemost 2022; 48 (02) 145-160
  • 81 Cooper PC, Hill M, Maclean RM. The phenotypic and genetic assessment of protein C deficiency. Int J Lab Hematol 2012; 34 (04) 336-346
  • 82 Simioni P, Lazzaro A, Zanardi S, Girolami A. Spurious protein C deficiency due to antiphospholipid antibodies. Am J Hematol 1991; 36 (04) 299-301
  • 83 Favre R, Zia-Chahabi S, Talb Y, de Gunzburg N, Flaujac C. Direct oral anticoagulant neutralization by activated charcoal DOAC-remove for thrombophilia screening. Blood Coagul Fibrinolysis 2021; 32 (05) 356-358
  • 84 Ruinemans-Koerts J, Peterse-Stienissen I, Verbruggen B. Non-parallelism in the one-stage coagulation factor assay is a phenomenon of lupus anticoagulants and not of individual factor inhibitors. Thromb Haemost 2010; 104 (05) 1080-1082
  • 85 Mackie IJ, Gallimore M, Machin SJ. Contact factor proteases and the complexes formed with alpha 2-macroglobulin can interfere in protein C assays by cleaving amidolytic substrates. Blood Coagul Fibrinolysis 1992; 3 (05) 589-595
  • 86 Han P, Fung KP, Rahdakrishnan U. Lack of agreement of chromogenic and clotting assays for factor X and protein C in warfarinised plasma. Thromb Haemost 1991; 65 (04) 360-363
  • 87 Bovill EG, Tomczak JA, Grant B. et al. Protein CVermont: symptomatic type II protein C deficiency associated with two GLA domain mutations. Blood 1992; 79 (06) 1456-1465
  • 88 Gaussem P, Gandrille S, Duchemin J. et al. Influence of six mutations of the protein C gene on the Gla domain conformation and calcium affinity. Thromb Haemost 1994; 71 (06) 748-754
  • 89 Seidel H, Haracska B, Naumann J, Westhofen P, Hass MS, Kruppenbacher JP. Laboratory limitations of excluding hereditary protein C deficiency by chromogenic assay: discrepancies of phenotype and genotype. Clin Appl Thromb Hemost 2020; 26: 1076029620912028
  • 90 Cooper PC, Siddiq S, Morse C, Nightingale J, Mumford AD. Marked discrepancy between coagulometric protein C activity assays with the pro-thrombotic protein C Asn2Ile substitution. Int J Lab Hematol 2011; 33 (05) 451-456
  • 91 Noguchi K, Nakazono E, Tsuda T. et al. Plasma phenotypes of protein S Lys196Glu and protein C Lys193del variants prevalent among young Japanese women. Blood Coagul Fibrinolysis 2019; 30 (08) 393-400
  • 92 Efthymiou M, Arachchillage DRJ, Lane PJ. et al. Antibodies against TFPI and protein C are associated with a severe thrombotic phenotype in patients with and without antiphospholipid syndrome. Thromb Res 2018; 170: 60-68
  • 93 MacCallum PK, Cooper JA, Martin J, Howarth DJ, Meade TW, Miller GJ. Associations of protein C and protein S with serum lipid concentrations. Br J Haematol 1998; 102 (02) 609-615
  • 94 Cushman M, Psaty BM, Meilahn EN, Dobs AS, Kuller LH. Post-menopausal hormone therapy and concentrations of protein C and antithrombin in elderly women. Br J Haematol 2001; 114 (01) 162-168
  • 95 Said JM, Ignjatovic V, Monagle PT, Walker SP, Higgins JR, Brennecke SP. Altered reference ranges for protein C and protein S during early pregnancy: implications for the diagnosis of protein C and protein S deficiency during pregnancy. Thromb Haemost 2010; 103 (05) 984-988
  • 96 Monagle P, Barnes C, Ignjatovic V. et al. Developmental haemostasis. Impact for clinical haemostasis laboratories. Thromb Haemost 2006; 95 (02) 362-372
  • 97 Toulon P. Developmental hemostasis: laboratory and clinical implications. Int J Lab Hematol 2016; 38 (Suppl. 01) 66-77
  • 98 Appel IM, Grimminck B, Geerts J, Stigter R, Cnossen MH, Beishuizen A. Age dependency of coagulation parameters during childhood and puberty. J Thromb Haemost 2012; 10 (11) 2254-2263
  • 99 Andrew M, Paes B, Milner R. et al. Development of the human coagulation system in the full-term infant. Blood 1987; 70 (01) 165-172
  • 100 Andrew M, Vegh P, Johnston M, Bowker J, Ofosu F, Mitchell L. Maturation of the hemostatic system during childhood. Blood 1992; 80 (08) 1998-2005
  • 101 Toulon P, Berruyer M, Brionne-François M. et al. Age dependency for coagulation parameters in paediatric populations. Results of a multicentre study aimed at defining the age-specific reference ranges. Thromb Haemost 2016; 116 (01) 9-16
  • 102 Attard C, van der Straaten T, Karlaftis V, Monagle P, Ignjatovic V. Developmental hemostasis: age-specific differences in the levels of hemostatic proteins. J Thromb Haemost 2013; 11 (10) 1850-1854
  • 103 Conlan MG, Folsom AR, Finch A, Davis CE, Sorlie P, Wu KK. Correlation of plasma protein C levels with cardiovascular risk factors in middle-aged adults: the Atherosclerosis Risk in Communities (ARIC) study. Thromb Haemost 1993; 70 (05) 762-767
  • 104 Tait RC, Walker ID, Islam SI. et al. Protein C activity in healthy volunteers–influence of age, sex, smoking and oral contraceptives. Thromb Haemost 1993; 70 (02) 281-285
  • 105 Lowe GD, Rumley A, Woodward M. et al. Epidemiology of coagulation factors, inhibitors and activation markers: the Third Glasgow MONICA Survey. I. Illustrative reference ranges by age, sex and hormone use. Br J Haematol 1997; 97 (04) 775-784
  • 106 Franchi F, Biguzzi E, Martinelli I. et al. Normal reference ranges of antithrombin, protein C and protein S: effect of sex, age and hormonal status. Thromb Res 2013; 132 (02) e152-e157
  • 107 Rodeghiero F, Tosetto A. The VITA Project: population-based distributions of protein C, antithrombin III, heparin-cofactor II and plasminogen–relationship with physiological variables and establishment of reference ranges. Thromb Haemost 1996; 76 (02) 226-233
  • 108 Allaart CF, Poort SR, Rosendaal FR, Reitsma PH, Bertina RM, Briët E. Increased risk of venous thrombosis in carriers of hereditary protein C deficiency defect. Lancet 1993; 341 (8838): 134-138
  • 109 Di Scipio RG, Hermodson MA, Yates SG, Davie EW. A comparison of human prothrombin, factor IX (Christmas factor), factor X (Stuart factor), and protein S. Biochemistry 1977; 16 (04) 698-706
  • 110 Ahnström J, Andersson HM, Canis K. et al. Activated protein C cofactor function of protein S: a novel role for a γ-carboxyglutamic acid residue. Blood 2011; 117 (24) 6685-6693
  • 111 Hackeng TM, Maurissen LF, Castoldi E, Rosing J. Regulation of TFPI function by protein S. J Thromb Haemost 2009; 7 (Suppl. 01) 165-168
  • 112 Gierula M, Ahnström J. Anticoagulant protein S-New insights on interactions and functions. J Thromb Haemost 2020; 18 (11) 2801-2811
  • 113 Dahlbäck B, Guo LJ, Livaja-Koshiar R, Tran S. Factor V-short and protein S as synergistic tissue factor pathway inhibitor (TFPIα) cofactors. Res Pract Thromb Haemost 2017; 2 (01) 114-124
  • 114 Gierula M, Noakes VM, Salles-Crawley II, Crawley JTB, Ahnström J. The TFPIα C-terminal tail is essential for TFPIα-FV-short-protein S complex formation and synergistic enhancement of TFPIα. J Thromb Haemost 2023; 21 (12) 3568-3580
  • 115 Dahlbäck B. The tale of protein S and C4b-binding protein, a story of affection. Thromb Haemost 2007; 98 (01) 90-96
  • 116 Maurissen LF, Thomassen MC, Nicolaes GA. et al. Re-evaluation of the role of the protein S-C4b binding protein complex in activated protein C-catalyzed factor Va-inactivation. Blood 2008; 111 (06) 3034-3041
  • 117 ten Kate MK, van der Meer J. Protein S deficiency: a clinical perspective. Haemophilia 2008; 14 (06) 1222-1228
  • 118 Marlar RA, Gausman JN, Tsuda H, Rollins-Raval MA, Brinkman HJM. Recommendations for clinical laboratory testing for protein S deficiency: communication from the SSC committee plasma coagulation inhibitors of the ISTH. J Thromb Haemost 2021; 19 (01) 68-74
  • 119 Zöller B, García de Frutos P, Dahlbäck B. Evaluation of the relationship between protein S and C4b-binding protein isoforms in hereditary protein S deficiency demonstrating type I and type III deficiencies to be phenotypic variants of the same genetic disease. Blood 1995; 85 (12) 3524-3531
  • 120 Marlar RA, Gausman JN. Protein S abnormalities: a diagnostic nightmare. Am J Hematol 2011; 86 (05) 418-421
  • 121 Pintao MC, Ribeiro DD, Bezemer ID. et al. Protein S levels and the risk of venous thrombosis: results from the MEGA case-control study. Blood 2013; 122 (18) 3210-3219
  • 122 Anderson DR, Brill-Edwards P, Walker I. Warfarin-induced skin necrosis in 2 patients with protein S deficiency: successful reinstatement of warfarin therapy. Haemostasis 1992; 22 (03) 124-128
  • 123 Tai CY, Ierardi R, Alexander JB. A case of warfarin skin necrosis despite enoxaparin anticoagulation in a patient with protein S deficiency. Ann Vasc Surg 2004; 18 (02) 237-242
  • 124 Fraga R, Diniz LM, Lucas EA, Emerich PS. Warfarin-induced skin necrosis in a patient with protein S deficiency. An Bras Dermatol 2018; 93 (04) 612-613
  • 125 Tsuda T, Jin X, Tsuda H. et al. New quantitative total protein S-assay system for diagnosing protein S type II deficiency: clinical application of the screening system for protein S type II deficiency. Blood Coagul Fibrinolysis 2012; 23 (01) 56-63
  • 126 Goodwin AJ, Rosendaal FR, Kottke-Marchant K, Bovill EG. A review of the technical, diagnostic, and epidemiologic considerations for protein S assays. Arch Pathol Lab Med 2002; 126 (11) 1349-1366
  • 127 Smock KJ, Plumhoff EA, Meijer P. et al. Protein S testing in patients with protein S deficiency, factor V Leiden, and rivaroxaban by North American Specialized Coagulation Laboratories. Thromb Haemost 2016; 116 (01) 50-57
  • 128 Lawrie AS, Lloyd ME, Mohamed F, Irons S, Hughes GR, Savidge GF. Assay of protein S in systemic lupus erythematosus. Blood Coagul Fibrinolysis 1995; 6 (04) 322-324
  • 129 Rossi E, Gatti L, Guarneri D, Finotto E, Lombardi A, Preda L. Functional protein S in women with lupus anticoagulant inhibitor. Thromb Res 1992; 65 (02) 253-262
  • 130 Tomás JF, Alberca I, Tabernero MD, Cordero M, Del Pino-Montes J, Vicente V. Natural anticoagulant proteins and antiphospholipid antibodies in systemic lupus erythematosus. J Rheumatol 1998; 25 (01) 57-62
  • 131 Seriolo B, Cutolo M, Accardo S. Association between acquired free protein S deficiency, anticardiolipin antibodies, and thrombotic events in rheumatoid arthritis. J Rheumatol 1998; 25 (11) 2281-2282
  • 132 Parke AL, Weinstein RE, Bona RD, Maier DB, Walker FJ. The thrombotic diathesis associated with the presence of phospholipid antibodies may be due to low levels of free protein S. Am J Med 1992; 93 (01) 49-56
  • 133 Van Cott EM, Ledford-Kraemer M, Meijer P, Nichols WL, Johnson SM, Peerschke EI. NASCOLA Proficiency Testing Committee. Protein S assays: an analysis of North American Specialized Coagulation Laboratory Association proficiency testing. Am J Clin Pathol 2005; 123 (05) 778-785
  • 134 Jennings I, Kitchen S, Woods TA, Preston FE. Multilaboratory testing in thrombophilia through the United Kingdom National External Quality Assessment Scheme (Blood Coagulation) Quality Assurance Program. Semin Thromb Hemost 2005; 31 (01) 66-72
  • 135 Jennings I, Kitchen S, Cooper P, Makris M, Preston FE. Sensitivity of functional protein S assays to protein S deficiency: a comparative study of three commercial kits. J Thromb Haemost 2003; 1 (05) 1112-1114
  • 136 Marlar RA, Potts RM, Welsh CW. Accuracy of diagnosis of protein S deficiency by protein S activity and antigen assays. J Clin Ligand 2005; 28: 130-135
  • 137 Rodger MA, Carrier M, Gervais M, Rock G. Normal functional protein S activity does not exclude protein S deficiency. Pathophysiol Haemost Thromb 2003; 33 (04) 202-205
  • 138 Siriez R, Dogné JM, Gosselin R, Laloy J, Mullier F, Douxfils J. Comprehensive review of the impact of direct oral anticoagulants on thrombophilia diagnostic tests: practical recommendations for the laboratory. Int J Lab Hematol 2021; 43 (01) 7-20
  • 139 Bovill EG, Landesman MM, Busch SA, Fregeau GR, Mann KG, Tracy RP. Studies on the measurement of protein S in plasma. Clin Chem 1991; 37 (10 Pt 1): 1708-1714
  • 140 Hubbard AR, Wong MY. A collaborative study on the measurement of protein S antigen in plasma. Thromb Haemost 1992; 68 (02) 115-118
  • 141 Persson KE, Hillarp A, Dahlbäck B. Analytical considerations for free protein S assays in protein S deficiency. Thromb Haemost 2001; 86 (05) 1144-1147
  • 142 Duebgen S, Kauke T, Marschall C. et al. Genotype and laboratory and clinical phenotypes of protein s deficiency. Am J Clin Pathol 2012; 137 (02) 178-184
  • 143 Brinkman HJM, Ahnström J, Castoldi E, Dahlbäck B, Marlar RA. Pleiotropic anticoagulant functions of protein S, consequences for the clinical laboratory. Communication from the SSC of the ISTH. J Thromb Haemost 2021; 19 (01) 281-286
  • 144 Bertina RM, Ploos van Amstel HK, van Wijngaarden A. et al. Heerlen polymorphism of protein S, an immunologic polymorphism due to dimorphism of residue 460. Blood 1990; 76 (03) 538-548
  • 145 Duchemin J, Gandrille S, Borgel D. et al. The Ser 460 to Pro substitution of the protein S alpha (PROS1) gene is a frequent mutation associated with free protein S (type IIa) deficiency. Blood 1995; 86 (09) 3436-3443
  • 146 Varvenne M, Kochhan L, Trummer A, Eisert R, Birschmann I. Clinical consequences of compound heterozygosity for protein S mutation Heerlen and p.Cys252Gly protein S mutation. Thromb Res 2011; 128 (05) 498-500
  • 147 Wypasek E, Potaczek DP, Alhenc-Gelas M, Undas A. Heerlen polymorphism associated with type III protein S deficiency and factor V Leiden mutation in a Polish patient with deep vein thrombosis. Blood Coagul Fibrinolysis 2014; 25 (01) 84-85
  • 148 Suchon P, Germain M, Delluc A. et al. Protein S Heerlen mutation heterozygosity is associated with venous thrombosis risk. Sci Rep 2017; 7: 45507
  • 149 Espinosa-Parrilla Y, Navarro G, Morell M, Abella E, Estivill X, Sala N. Homozygosity for the protein S Heerlen allele is associated with type I PS deficiency in a thrombophilic pedigree with multiple risk factors. Thromb Haemost 2000; 83 (01) 102-106
  • 150 Alhenc-Gelas M, Canonico M, Morange PE, Emmerich J. Geht Genetic Thrombophilia Group. Protein S inherited qualitative deficiency: novel mutations and phenotypic influence. J Thromb Haemost 2010; 8 (12) 2718-2726
  • 151 Denis CV, Roberts SJ, Hackeng TM, Lenting PJ. In vivo clearance of human protein S in a mouse model: influence of C4b-binding protein and the Heerlen polymorphism. Arterioscler Thromb Vasc Biol 2005; 25 (10) 2209-2215
  • 152 Heeb MJ, Koenen RR, Fernández JA, Hackeng TM. Direct anticoagulant activity of protein S-C4b binding protein complex in Heerlen heterozygotes and normals. J Thromb Haemost 2004; 2 (10) 1766-1773
  • 153 Hayashi T, Nishioka J, Suzuki K. Molecular mechanism of the dysfunction of protein S(Tokushima) (Lys155–>Glu) for the regulation of the blood coagulation system. Biochim Biophys Acta 1995; 1272 (03) 159-167
  • 154 D'Angelo A, Viganò D'Angelo S. Protein S deficiency. Haematologica 2008; 93 (04) 498-501
  • 155 Vigano-D'Angelo S, D'Angelo A, Kaufman Jr CE, Sholer C, Esmon CT, Comp PC. Protein S deficiency occurs in the nephrotic syndrome. Ann Intern Med 1987; 107 (01) 42-47
  • 156 Ceriello A, Giugliano D, Quatraro A, Marchi E, Barbanti M, Lefebvre P. Possible role for increased C4b-binding-protein level in acquired protein S deficiency in type I diabetes. Diabetes 1990; 39 (04) 447-449
  • 157 Addai-Mensah O, Annani-Akollor ME, Nsafoah FO. et al. Effect of poor glycaemic control on plasma levels and activity of protein C, protein S, and antithrombin III in type 2 diabetes mellitus. PLoS One 2019; 14 (09) e0223171
  • 158 Fernández JA, Estellés A, Gilabert J, España F, Aznar J. Functional and immunologic protein S in normal pregnant women and in full-term newborns. Thromb Haemost 1989; 61 (03) 474-478
  • 159 Fu M, Liu J, Xing J. et al. Reference intervals for coagulation parameters in non-pregnant and pregnant women. Sci Rep 2022; 12 (01) 1519
  • 160 Szecsi PB, Jørgensen M, Klajnbard A, Andersen MR, Colov NP, Stender S. Haemostatic reference intervals in pregnancy. Thromb Haemost 2010; 103 (04) 718-727
  • 161 Oruç S, Saruç M, Koyuncu FM, Ozdemir E. Changes in the plasma activities of protein C and protein S during pregnancy. Aust N Z J Obstet Gynaecol 2000; 40 (04) 448-450
  • 162 Stahl CP, Wideman CS, Spira TJ, Haff EC, Hixon GJ, Evatt BL. Protein S deficiency in men with long-term human immunodeficiency virus infection. Blood 1993; 81 (07) 1801-1807
  • 163 Lafeuillade A, Sorice M, Griggi T, Pellegrino P, Geoffroy M, Profizi N. Role of autoimmunity in protein S deficiency during HIV-1 infection. Infection 1994; 22 (03) 201-203
  • 164 D'Angelo A, Della Valle P, Crippa L, Pattarini E, Grimaldi LM, Viganò D'Angelo S. Brief report: autoimmune protein S deficiency in a boy with severe thromboembolic disease. N Engl J Med 1993; 328 (24) 1753-1757
  • 165 Regnault V, Boehlen F, Ozsahin H. et al. Anti-protein S antibodies following a varicella infection: detection, characterization and influence on thrombin generation. J Thromb Haemost 2005; 3 (06) 1243-1249
  • 166 Deitcher SR, Erban JK, Limentani SA. Acquired free protein S deficiency associated with multiple myeloma: a case report. Am J Hematol 1996; 51 (04) 319-323
  • 167 Guermazi S, Hamza M, Dellagi K. Protein S deficiency and antibodies to protein S in patients with Behçet's disease. Thromb Res 1997; 86 (03) 197-204
  • 168 Crowther MA, Johnston M, Weitz J, Ginsberg JS. Free protein S deficiency may be found in patients with antiphospholipid antibodies who do not have systemic lupus erythematosus. Thromb Haemost 1996; 76 (05) 689-691
  • 169 Erkan D, Zhang HW, Shriky RC, Merrill JT. Dual antibody reactivity to beta2-glycoprotein I and protein S: increased association with thrombotic events in the antiphospholipid syndrome. Lupus 2002; 11 (04) 215-220
  • 170 Ginsberg JS, Demers C, Brill-Edwards P. et al. Acquired free protein S deficiency is associated with antiphospholipid antibodies and increased thrombin generation in patients with systemic lupus erythematosus. Am J Med 1995; 98 (04) 379-383
  • 171 Guermazi S, Regnault V, Gorgi Y, Ayed K, Lecompte T, Dellagi K. Further evidence for the presence of anti-protein S autoantibodies in patients with systemic lupus erythematosus. Blood Coagul Fibrinolysis 2000; 11 (05) 491-498
  • 172 Song KS, Park YS, Kim HK. Prevalence of anti-protein S antibodies in patients with systemic lupus erythematosus. Arthritis Rheum 2000; 43 (03) 557-560
  • 173 Wun T, Brunson A. Sickle cell disease: an inherited thrombophilia. Hematology (Am Soc Hematol Educ Program) 2016; 2016 (01) 640-647
  • 174 Noubouossie D, Key NS, Ataga KI. Coagulation abnormalities of sickle cell disease: relationship with clinical outcomes and the effect of disease modifying therapies. Blood Rev 2016; 30 (04) 245-256
  • 175 Henkens CM, Bom VJ, Van der Schaaf W. et al. Plasma levels of protein S, protein C, and factor X: effects of sex, hormonal state and age. Thromb Haemost 1995; 74 (05) 1271-1275
  • 176 Ignjatovic V, Kenet G, Monagle P. Perinatal and Paediatric Haemostasis Subcommittee of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. Developmental hemostasis: recommendations for laboratories reporting pediatric samples. J Thromb Haemost 2012; 10 (02) 298-300
  • 177 Mulder R, Ten Kate MK, Kluin-Nelemans HC, Mulder AB. Low cut-off values increase diagnostic performance of protein S assays. Thromb Haemost 2010; 104 (03) 618-625
  • 178 Nicolaes GA, Dahlbäck B. Congenital and acquired activated protein C resistance. Semin Vasc Med 2003; 3 (01) 33-46
  • 179 Moore GW, Van Cott EM, Cutler JA, Mitchell MJ, Adcock DM. subcommittee on plasma coagulation inhibitors. Recommendations for clinical laboratory testing of activated protein C resistance; communication from the SSC of the ISTH. J Thromb Haemost 2019; 17 (09) 1555-1561
  • 180 Bertina RM, Koeleman BP, Koster T. et al. Mutation in blood coagulation factor V associated with resistance to activated protein C. Nature 1994; 369 (6475): 64-67
  • 181 Moore GW, Castoldi E, Teruya J, Morishita E, Adcock DM, Factor V. Factor V Leiden-independent activated protein C resistance: communication from the plasma coagulation inhibitors subcommittee of the International Society on Thrombosis and Haemostasis Scientific and Standardisation Committee. J Thromb Haemost 2023; 21 (01) 164-174
  • 182 Sheppard DR. Activated protein C resistance: the most common risk factor for venous thromboembolism. J Am Board Fam Pract 2000; 13 (02) 111-115
  • 183 Williamson D, Brown K, Luddington R, Baglin C, Baglin T, Factor V. Factor V Cambridge: a new mutation (Arg306–>Thr) associated with resistance to activated protein C. Blood 1998; 91 (04) 1140-1144
  • 184 Chan WP, Lee CK, Kwong YL, Lam CK, Liang R. A novel mutation of Arg306 of factor V gene in Hong Kong Chinese. Blood 1998; 91 (04) 1135-1139
  • 185 Cai H, Hua B, Fan L, Wang Q, Wang S, Zhao Y. A novel mutation (g2172–>c) in the factor V gene in a Chinese family with hereditary activated protein C resistance. Thromb Res 2010; 125 (06) 545-548
  • 186 Gandrille S, Greengard JS, Alhenc-Gelas M. et al. Incidence of activated protein C resistance caused by the ARG 506 GLN mutation in factor V in 113 unrelated symptomatic protein C-deficient patients. The French Network on the behalf of INSERM. Blood 1995; 86 (01) 219-224
  • 187 Mumford AD, McVey JH, Morse CV. et al. Factor V I359T: a novel mutation associated with thrombosis and resistance to activated protein C. Br J Haematol 2003; 123 (03) 496-501
  • 188 Pezeshkpoor B, Castoldi E, Mahler A. et al. Identification and functional characterization of a novel F5 mutation (Ala512Val, FVB onn) associated with activated protein C resistance. J Thromb Haemost 2016; 14 (07) 1353-1363
  • 189 Nogami K, Shinozawa K, Ogiwara K. et al. Novel FV mutation (W1920R, FVNara) associated with serious deep vein thrombosis and more potent APC resistance relative to FVLeiden. Blood 2014; 123 (15) 2420-2428
  • 190 Castoldi E, Hézard N, Mourey G. et al. Severe thrombophilia in a factor V-deficient patient homozygous for the Ala2086Asp mutation (FV Besançon). J Thromb Haemost 2021; 19 (05) 1186-1199
  • 191 Castoldi E, Rosing J. APC resistance: biological basis and acquired influences. J Thromb Haemost 2010; 8 (03) 445-453
  • 192 Castaman G, Tosetto A, Simioni M, Ruggeri M, Madeo D, Rodeghiero F. Phenotypic APC resistance in carriers of the A20210 prothrombin mutation is associated with an increased risk of venous thrombosis. Thromb Haemost 2001; 86 (03) 804-808
  • 193 Graf LL, Welsh CH, Qamar Z, Marlar RA. Activated protein C resistance assay detects thrombotic risk factors other than factor V Leiden. Am J Clin Pathol 2003; 119 (01) 52-60
  • 194 Simioni P, Cagnin S, Sartorello F. et al. Partial F8 gene duplication (factor VIII Padua) associated with high factor VIII levels and familial thrombophilia. Blood 2021; 137 (17) 2383-2393
  • 195 Tripodi A, Chantarangkul V, Mannucci PM. Hyperprothrombinemia may result in scquired activated protein C resistance. Blood 2000; 96 (09) 3295-3296
  • 196 de Visser MC, van Hylckama Vlieg A, Tans G. et al. Determinants of the APTT- and ETP-based APC sensitivity tests. J Thromb Haemost 2005; 3 (07) 1488-1494
  • 197 Sarig G, Michaeli Y, Lanir N, Brenner B, Haim N. Mechanisms for acquired activated protein C resistance in cancer patients. J Thromb Haemost 2005; 3 (03) 589-590
  • 198 Negaard HF, Iversen PO, Ostenstad B, Mowinckel MC, Sandset PM. Increased acquired activated protein C resistance in unselected patients with hematological malignancies. J Thromb Haemost 2008; 6 (09) 1482-1487
  • 199 Wahl D, Membre A, Perret-Guillaume C, Regnault V, Lecompte T. Mechanisms of antiphospholipid-induced thrombosis: effects on the protein C system. Curr Rheumatol Rep 2009; 11 (01) 77-81
  • 200 Kadauke S, Khor B, Van Cott EM. Activated protein C resistance testing for factor V Leiden. Am J Hematol 2014; 89 (12) 1147-1150
  • 201 Moore GW, Chege E, Culhane AP, Hunt BJ. Maximising the diagnostic potential of APTT-based screening assays for activated protein C resistance. Int J Lab Hematol 2015; 37 (06) 844-852
  • 202 Saenz AJ, Johnson NV, Van Cott EM. Acquired activated protein C resistance caused by lupus anticoagulants. Am J Clin Pathol 2011; 136 (03) 344-349
  • 203 Ragland BD, Reed CE, Eiland BM. et al. The effect of lupus anticoagulant in the second-generation assay for activated protein C resistance. Am J Clin Pathol 2003; 119 (01) 66-71
  • 204 Valverde S, Trabuio E, Antico F, Manoni F, Gessoni G. Evaluation of two functional assays in detection of factor V Leiden carriers. I J La M 2009; 5: 212-216
  • 205 Quehenberger P, Handler S, Mannhalter C, Kyrle PA, Speiser W. The Factor V (Leiden) test: evaluation of an assay based on dilute Russell Viper Venom Time for the detection of the Factor V Leiden mutation. Thromb Res 1999; 96 (02) 125-133
  • 206 Quenhenberger P, Handler S, Mannhalter C, Pabinger-Fasching I, Speiser W. Evaluation of a highly specific functional test for the detection of factor V Leiden. Int J Clin Lab Res 2000; 30 (03) 113-117
  • 207 Coen Herak D, Milos M, Zadro R. Improvement of STA:STACLOT APC-R Test for the detection of factor V Leiden by using APCR ratio. J Thromb Haemost 2005; 3 (Suppl. 01) abstract P1292
  • 208 Schöni R, Quehenberger P, Wu JR, Wilmer M. Clinical evaluation of a new functional test for detection of activated protein C resistance (Pefakit APC-R Factor V Leiden) at two centers in Europe and the USA. Thromb Res 2007; 119 (01) 17-26
  • 209 Amiral J, Vissac AM, Seghatchian J. Laboratory assessment of activated protein C resistance/factor V-Leiden and performance characteristics of a new quantitative assay. Transfus Apheresis Sci 2017; 56 (06) 906-913
  • 210 Tripodi A, Chantarangkul V, Negri B, Mannucci PM. Standardization of the APC resistance test. Effects of normalization of results by means of pooled normal plasma. Thromb Haemost 1998; 79 (03) 564-566
  • 211 Wilmer M, Stocker C, Bühler B, Conell B, Calatzis A. Improved distinction of factor V wild-type and factor V Leiden using a novel prothrombin-based activated protein C resistance assay. Am J Clin Pathol 2004; 122 (06) 836-842
  • 212 Foster PA, Varma RR. Phenotypic correction of activated protein C resistance following orthotopic liver transplantation. Blood Coagul Fibrinolysis 1996; 7 (01) 65-68
  • 213 Leroy-Matheron C, Duvoux C, Van Nhieu JT, Leroy K, Cherqui D, Gouault-Heilmann M. Activated protein C resistance acquired through liver transplantation and associated with recurrent venous thrombosis. J Hepatol 2003; 38 (06) 866-869
  • 214 Willems M, Sterneck M, Langer F. et al. Recurrent deep-vein thrombosis based on homozygous factor V Leiden mutation acquired after liver transplantation. Liver Transpl 2003; 9 (08) 870-873
  • 215 Ayala R, Martínez-López J, Cedena T. et al. Recipient and donor thrombophilia and the risk of portal venous thrombosis and hepatic artery thrombosis in liver recipients. BMC Gastroenterol 2011; 11: 130
  • 216 Chiusolo P, Sica S, Salutari P. et al. Factor V Leiden and allogeneic bone marrow transplantation: chimerism as a confounding factor in genetic test interpretation. Clin Lab Haematol 1999; 21 (06) 401-402
  • 217 Cunningham MT, Brandt JT, Laposata M, Olson JD. Laboratory diagnosis of dysfibrinogenemia. Arch Pathol Lab Med 2002; 126 (04) 499-505
  • 218 Thorsen LI, Brosstad F, Solum NO, Stormorken H. Increased binding to ADP-stimulated platelets and aggregation effect of the dysfibrinogen Oslo I as compared with normal fibrinogen. Scand J Haematol 1986; 36 (02) 203-210
  • 219 Shapiro SE. Diagnosis and management of dysfibrinogenemia. Clin Adv Hematol Oncol 2018; 16 (09) 602-605
  • 220 Franchini M, Martinelli I, Mannucci PM. Uncertain thrombophilia markers. Thromb Haemost 2016; 115 (01) 25-30
  • 221 Sachs UJ, Kirsch-Altena A, Müller J. Markers of hereditary thrombophilia with unclear significance. Hamostaseologie 2022; 42 (06) 370-380
  • 222 Simioni P, Tormene D, Tognin G. et al. X-linked thrombophilia with a mutant factor IX (factor IX Padua). N Engl J Med 2009; 361 (17) 1671-1675
  • 223 Miyawaki Y, Suzuki A, Fujita J. et al. Thrombosis from a prothrombin mutation conveying antithrombin resistance. N Engl J Med 2012; 366 (25) 2390-2396
  • 224 Djordjevic V, Kovac M, Miljic P. et al. A novel prothrombin mutation in two families with prominent thrombophilia–the first cases of antithrombin resistance in a Caucasian population. J Thromb Haemost 2013; 11 (10) 1936-1939
  • 225 Bulato C, Radu CM, Campello E. et al. New prothrombin mutation (Arg596Trp, Prothrombin Padua 2) associated with venous thromboembolism. Arterioscler Thromb Vasc Biol 2016; 36 (05) 1022-1029
  • 226 Sivasundar S, Oommen AT, Prakash O. et al. Molecular defect of 'Prothrombin Amrita': substitution of arginine by glutamine (Arg553 to Gln) near the Na(+) binding loop of prothrombin. Blood Cells Mol Dis 2013; 50 (03) 182-183
  • 227 Tamura S, Suga Y, Tanamura M. et al. Optimisation of antithrombin resistance assay as a practical clinical laboratory test: development of prothrombin activator using factors Xa/Va and automation of assay. Int J Lab Hematol 2018; 40 (03) 312-319
  • 228 Gosselin RC, Marlar RA. Preanalytical variables in coagulation testing: setting the stage for accurate results. Semin Thromb Hemost 2019; 45 (05) 433-448
  • 229 Favaloro EJ, Gosselin RC, Pasalic L, Lippi G. Post-analytical Issues in hemostasis and thrombosis testing: an update. Methods Mol Biol 2023; 2663: 787-811
  • 230 Hubbard AR. International biological standards for coagulation factors and inhibitors. Semin Thromb Hemost 2007; 33 (03) 283-289
  • 231 Mackie I, Cooper P, Kitchen S. Quality assurance issues and interpretation of assays. Semin Hematol 2007; 44 (02) 114-125
  • 232 Jerrard-Dunne P, Evans A, McGovern R. et al. Ethnic differences in markers of thrombophilia: implications for the investigation of ischemic stroke in multiethnic populations: the South London Ethnicity and Stroke Study. Stroke 2003; 34 (08) 1821-1826
  • 233 Chen TY, Su WC, Tsao CJ. Incidence of thrombophilia detected in southern Taiwanese patients with venous thrombosis. Ann Hematol 2003; 82 (02) 114-117
  • 234 Kinoshita S, Iida H, Inoue S. et al. Protein S and protein C gene mutations in Japanese deep vein thrombosis patients. Clin Biochem 2005; 38 (10) 908-915
  • 235 Zhu T, Ding Q, Bai X. et al. Normal ranges and genetic variants of antithrombin, protein C and protein S in the general Chinese population. Results of the Chinese Hemostasis Investigation on Natural Anticoagulants Study I Group. Haematologica 2011; 96 (07) 1033-1040
  • 236 Tang L, Lu X, Yu JM. et al. PROC c.574_576del polymorphism: a common genetic risk factor for venous thrombosis in the Chinese population. J Thromb Haemost 2012; 10 (10) 2019-2026
  • 237 Ormesher L, Simcox LE, Tower C, Greer IA. 'To test or not to test', the arguments for and against thrombophilia testing in obstetrics. Obstet Med 2017; 10 (02) 61-66