RSS-Feed abonnieren

DOI: 10.1055/s-0044-1792102
Boron-Containing Compounds as Antimicrobial Agents to Tackle Drug-Resistant Bacteria
Autoren
Funding This work was financially supported by grants from the National Natural Science Foundation of China (Grant Nos. 81973368 and 81970738).

Abstract
Bacterial infections, especially those caused by drug-resistant bacterial pathogens, are crucial diseases that damage human health. In recent decades, several important boron-containing drugs have been marketed as anticancer agents or anti-infective adjuvants. Among them, vaborbactam revitalizes the antibacterial effects of meropenem against bacteria by inhibiting β-lactamases, opening a new field for addressing bacterial resistance. In this article, the chemical features of boron atoms and the typical antibacterial agents and adjuvants of boron-containing compounds are reviewed. In this work, boron-containing agents are classified into four categories according to their action mechanisms: β-lactamase inhibitors, leucyl-tRNA synthetase inhibitors, LexA self-cleavage inhibitors, and NorA efflux pump inhibitors. This review provides actionable insights for addressing the increasingly severe drug-resistant infections of bacterial pathogens.
Keywords
boron-containing compounds - bacterial infections - drug-resistant - antibacterial agents - adjuvants# These authors contributed equally to this work.
Publikationsverlauf
Eingereicht: 28. März 2024
Angenommen: 08. Oktober 2024
Artikel online veröffentlicht:
20. November 2024
© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 De Oliveira DMP, Forde BM, Kidd TJ. et al. Antimicrobial resistance in ESKAPE pathogens. Clin Microbiol Rev 2020; 33 (03) e00181-e19
- 2 Fleming A. Onthe antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae. Br J Exp Pathol 1929; 10: 226-236
- 3 Cepas V, López Y, Muñoz E. et al. Relationship between biofilm formation and antimicrobial resistance in Gram-negative bacteria. Microb Drug Resist 2019; 25 (01) 72-79
- 4 Lewis K. Platforms for antibiotic discovery. Nat Rev Drug Discov 2013; 12 (05) 371-387
- 5 Brown ED, Wright GD. Antibacterial drug discovery in the resistance era. Nature 2016; 529 (7586): 336-343
- 6 Silver LL. Challenges of antibacterial discovery. Clin Microbiol Rev 2011; 24 (01) 71-109
- 7 Bush K. Improving known classes of antibiotics: an optimistic approach for the future. Curr Opin Pharmacol 2012; 12 (05) 527-534
- 8 Fernandes GFS, Denny WA, Dos Santos JL. Boron in drug design: recent advances in the development of new therapeutic agents. Eur J Med Chem 2019; 179: 791-804
- 9 Giovannuzzi S, Nikitjuka A, Pereira Resende BR. et al. Boron-containing carbonic anhydrases inhibitors. Bioorg Chem 2024; 143: 106976
- 10 Sabnis RW. Boron-containing pyrazole compounds as JAK inhibitors for treating inflammation, autoimmune diseases, and cancer. ACS Med Chem Lett 2022; 13 (10) 1554-1555
- 11 Ren J, Gao Y, Shi W. et al. Design and synthesis of boron-containing ALK inhibitor with favorable in vivo efficacy. Bioorg Med Chem 2022; 75: 117071
- 12 Scorei RI, Popa Jr R. Boron-containing compounds as preventive and chemotherapeutic agents for cancer. Anticancer Agents Med Chem 2010; 10 (04) 346-351
- 13 Chen M, Menon MC, Wang W. et al. HCK induces macrophage activation to promote renal inflammation and fibrosis via suppression of autophagy. Nat Commun 2023; 14 (01) 4297
- 14 Jia R, Zhang J, Zhang J. et al. Discovery of novel boron-containing n-substituted oseltamivir derivatives as anti-influenza virus agents for overcoming N1–H274Y oseltamivir-resistant. Molecules 2022; 27 (19) 6426
- 15 Song S, Gao P, Sun L. et al. Recent developments in the medicinal chemistry of single boron atom-containing compounds. Acta Pharm Sin B 2021; 11 (10) 3035-3059
- 16 Newman H, Krajnc A, Bellini D. et al. High-throughput crystallography reveals boron-containing inhibitors of a penicillin-binding protein with di- and tricovalent binding modes. J Med Chem 2021; 64 (15) 11379-11394
- 17 Gorovoy AS, Gozhina OV, Svendsen JS. et al. Boron-containing peptidomimetics–a novel class of selective anti-tubercular drugs. Chem Biol Drug Des 2013; 81 (03) 408-413
- 18 Narayanan S, Cai CY, Assaraf YG. et al. Targeting the ubiquitin-proteasome pathway to overcome anti-cancer drug resistance. Drug Resist Updat 2020; 48: 100663
- 19 Groll M, Berkers CR, Ploegh HL, Ovaa H. Crystal structure of the boronic acid-based proteasome inhibitor bortezomib in complex with the yeast 20S proteasome. Structure 2006; 14 (03) 451-456
- 20 Baker SJ, Zhang YK, Akama T. et al. Discovery of a new boron-containing antifungal agent, 5-fluoro-1,3-dihydro-1-hydroxy-2,1- benzoxaborole (AN2690), for the potential treatment of onychomycosis. J Med Chem 2006; 49 (15) 4447-4450
- 21 Crocetti L, Floresta G, Cilibrizzi A, Giovannoni MP. An overview of PDE4 inhibitors in clinical trials: 2010 to early 2022. Molecules 2022; 27 (15) 4964
- 22 Uluisik I, Karakaya HC, Koc A. The importance of boron in biological systems. J Trace Elem Med Biol 2018; 45: 156-162
- 23 Leśnikowski ZJ. Recent developments with boron as a platform for novel drug design. Expert Opin Drug Discov 2016; 11 (06) 569-578
- 24 Palzkill T. Metallo-β-lactamase structure and function. Ann N Y Acad Sci 2013; 1277: 91-104
- 25 Lima LM, Silva BNMD, Barbosa G, Barreiro EJ. β-lactam antibiotics: an overview from a medicinal chemistry perspective. Eur J Med Chem 2020; 208: 112829
- 26 Blumberg PM, Strominger JL. Interaction of penicillin with the bacterial cell: penicillin-binding proteins and penicillin-sensitive enzymes. Bacteriol Rev 1974; 38 (03) 291-335
- 27 Typas A, Banzhaf M, Gross CA, Vollmer W. From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nat Rev Microbiol 2011; 10 (02) 123-136
- 28 Buynak JD. β-Lactamase inhibitors: a review of the patent literature (2010 - 2013). Expert Opin Ther Pat 2013; 23 (11) 1469-1481
- 29 Bonomo RA. β-lactamases: a focus on current challenges. Cold Spring Harb Perspect Med 2017; 7 (01) a025239
- 30 Abraham EP, Chain E. An enzyme from bacteria able to destroy penicillin. 1940. Rev Infect Dis 1988; 10 (04) 677-678
- 31 Levy SB, Marshall B. Antibacterial resistance worldwide: causes, challenges and responses. Nat Med 2004; 10 (12, suppl): S122-S129
- 32 Bush K, Jacoby GA. Updated functional classification of beta-lactamases. Antimicrob Agents Chemother 2010; 54 (03) 969-976
- 33 Liu B, Trout REL, Chu GH. et al. Discovery of taniborbactam (VNRX-5133): a broad-spectrum serine- and metallo-β-lactamase inhibitor for carbapenem-resistant bacterial infections. J Med Chem 2020; 63 (06) 2789-2801
- 34 Bassetti M, Ginocchio F, Mikulska M, Taramasso L, Giacobbe DR. Will new antimicrobials overcome resistance among Gram-negatives?. Expert Rev Anti Infect Ther 2011; 9 (10) 909-922
- 35 Bush K. The ABCD's of β-lactamase nomenclature. J Infect Chemother 2013; 19 (04) 549-559
- 36 Knox JR. Extended-spectrum and inhibitor-resistant TEM-type β-lactamases: mutations, specificity, and three-dimensional structure. Antimicrob Agents Chemother 1995; 39 (12) 2593-2601
- 37 Bush K, Bradford PA. Interplay between β-lactamases and new β-lactamase inhibitors. Nat Rev Microbiol 2019; 17 (05) 295-306
- 38 Falagas ME, Mavroudis AD, Vardakas KZ. The antibiotic pipeline for multi-drug resistant gram negative bacteria: what can we expect?. Expert Rev Anti Infect Ther 2016; 14 (08) 747-763
- 39 Papp-Wallace KM, Bonomo RA. New β-lactamase inhibitors in the clinic. Infect Dis Clin North Am 2016; 30 (02) 441-464
- 40 Coleman K. Diazabicyclooctanes (DBOs): a potent new class of non-β-lactam β-lactamase inhibitors. Curr Opin Microbiol 2011; 14 (05) 550-555
- 41 Kiener PA, Waley SG. Reversible inhibitors of penicillinases. Biochem J 1978; 169 (01) 197-204
- 42 Beesley T, Gascoyne N, Knott-Hunziker V. et al. The inhibition of class C β-lactamases by boronic acids. Biochem J 1983; 209 (01) 229-233
- 43 Morandi S, Morandi F, Caselli E, Shoichet BK, Prati F. Structure-based optimization of cephalothin-analogue boronic acids as β-lactamase inhibitors. Bioorg Med Chem 2008; 16 (03) 1195-1205
- 44 Brem J, Cain R, Cahill S. et al. Structural basis of metallo-β-lactamase, serine-β-lactamase and penicillin-binding protein inhibition by cyclic boronates. Nat Commun 2016; 7: 12406
- 45 Krajnc A, Brem J, Hinchliffe P. et al. Bicyclic boronate VNRX-5133 inhibits metallo- and serine-β-lactamases. J Med Chem 2019; 62 (18) 8544-8556
- 46 Nocentini A, Supuran CT, Winum JY. Benzoxaborole compounds for therapeutic uses: a patent review (2010- 2018). Expert Opin Ther Pat 2018; 28 (06) 493-504
- 47 Hecker SJ, Reddy KR, Totrov M. et al. Discovery of a cyclic boronic acid β-lactamase inhibitor (RPX7009) with utility vs class a serine carbapenemases. J Med Chem 2015; 58 (09) 3682-3692
- 48 Castanheira M, Rhomberg PR, Flamm RK, Jones RN. Effect of the β-lactamase inhibitor vaborbactam combined with meropenem against serine carbapenemase-producing enterobacteriaceae. Antimicrob Agents Chemother 2016; 60 (09) 5454-5458
- 49 Hackel MA, Lomovskaya O, Dudley MN, Karlowsky JA, Sahm DF. In vitro activity of meropenem-vaborbactam against clinical isolates of KPC-positive enterobacteriaceae. Antimicrob Agents Chemother 2017; 62 (01) e01904-e01917
- 50 Patel TS, Pogue JM, Mills JP, Kaye KS. Meropenem-vaborbactam: a new weapon in the war against infections due to resistant Gram-negative bacteria. Future Microbiol 2018; 13 (09) 971-983
- 51 Cho JC, Zmarlicka MT, Shaeer KM, Pardo J. Meropenem/vaborbactam, the first carbapenem/β-lactamase inhibitor combination. Ann Pharmacother 2018; 52 (08) 769-779
- 52 Lapuebla A, Abdallah M, Olafisoye O. et al. Activity of meropenem combined with RPX7009, a novel β-lactamase inhibitor, against Gram-negative clinical isolates in new york city. Antimicrob Agents Chemother 2015; 59 (08) 4856-4860
- 53 Castanheira M, Huband MD, Mendes RE, Flamm RK. Meropenem-vaborbactam tested against contemporary Gram-negative isolates collected worldwide during 2014, including carbapenem-resistant, KPC-producing, multidrug-resistant, and extensively drug-resistant enterobacteriaceae. Antimicrob Agents Chemother 2017; 61 (09) e00567-e17
- 54 Dhillon S. Meropenem/vaborbactam: a review in complicated urinary tract infections. Drugs 2018; 78 (12) 1259-1270
- 55 Powers RA, Swanson HC, Taracila MA. et al. Biochemical and structural analysis of inhibitors targeting the ADC-7 cephalosporinase of Acinetobacter baumannii. Biochemistry 2014; 53 (48) 7670-7679
- 56 Caselli E, Romagnoli C, Powers RA. et al. Inhibition of acinetobacter-derived cephalosporinase: exploring the carboxylate recognition site using novel β-lactamase inhibitors. ACS Infect Dis 2018; 4 (03) 337-348
- 57 Morandi F, Caselli E, Morandi S. et al. Nanomolar inhibitors of AmpC β-lactamase. J Am Chem Soc 2003; 125 (03) 685-695
- 58 Bouza AA, Swanson HC, Smolen KA. et al. Structure-based analysis of boronic acids as inhibitors of acinetobacter-derived cephalosporinase-7, a unique class C β-lactamase. ACS Infect Dis 2018; 4 (03) 325-336
- 59 Werner JP, Mitchell JM, Taracila MA, Bonomo RA, Powers RA. Exploring the potential of boronic acids as inhibitors of OXA-24/40 β-lactamase. Protein Sci 2017; 26 (03) 515-526
- 60 Tan Q, Ogawa AM, Painter RE, Park YW, Young K, DiNinno FP. 4,7-Dichloro benzothien-2-yl sulfonylaminomethyl boronic acid: first boronic acid-derived β-lactamase inhibitor with class A, C, and D activity. Bioorg Med Chem Lett 2010; 20 (08) 2622-2624
- 61 McKinney DC, Zhou F, Eyermann CJ. et al. 4,5-Disubstituted 6-aryloxy-1,3-dihydrobenzo[c][1,2]oxaboroles are broad-spectrum serine β-lactamase inhibitors. ACS Infect Dis 2015; 1 (07) 310-316
- 62 Ehmann DE, Jahic H, Ross PL. et al. Kinetics of avibactam inhibition against Class A, C, and D β-lactamases. J Biol Chem 2013; 288 (39) 27960-27971
- 63 Bush K. Past and present perspectives on β-lactamases. Antimicrob Agents Chemother 2018; 62 (10) e01076-e18
- 64 Hamrick JC, Docquier JD, Uehara T. et al. VNRX-5133 (Taniborbactam), a broad-spectrum inhibitor of serine- and metallo-β-lactamases, restores activity of cefepime in enterobacterales and pseudomonas aeruginosa. Antimicrob Agents Chemother 2020; 64 (03) e01963-e19
- 65 Abdelraouf K, Almarzoky Abuhussain S, Nicolau DP. In vivo pharmacodynamics of new-generation β-lactamase inhibitor taniborbactam (formerly VNRX-5133) in combination with cefepime against serine-β-lactamase-producing Gram-negative bacteria. J Antimicrob Chemother 2020; 75 (12) 3601-3610
- 66 Hecker SJ, Reddy KR, Lomovskaya O. et al. Discovery of cyclic boronic acid QPX7728, an ultrabroad-spectrum inhibitor of serine and metallo-β-lactamases. J Med Chem 2020; 63 (14) 7491-7507
- 67 Lomovskaya O, Nelson K, Rubio-Aparicio D, Tsivkovski R, Sun D, Dudley MN. Impact of intrinsic resistance mechanisms on the potency of QPX7728, a new ultrabroad-spectrum beta-lactamase inhibitor of serine and metallo-beta-lactamases in enterobacteriaceae, pseudomonas aeruginosa, and acinetobacter baumannii. Antimicrob Agents Chemother 2020; 64 (06) e00552-e20
- 68 Langley GW, Cain R, Tyrrell JM. et al. Profiling interactions of vaborbactam with metallo-β-lactamases. Bioorg Med Chem Lett 2019; 29 (15) 1981-1984
- 69 Tsivkovski R, Totrov M, Lomovskaya O. Biochemical characterization of QPX7728, a new ultrabroad-spectrum β-lactamase inhibitor of serine and metallo-β-lactamases. Antimicrob Agents Chemother 2020; 64 (06) e00130-e20
- 70 Lence E, González-Bello C. Molecular basis of bicyclic boronate β-lactamase inhibitors of ultrabroad efficacy - insights from molecular dynamics simulation studies. Front Microbiol 2021; 12: 721826
- 71 Reddy KR, Parkinson J, Sabet M. et al. Selection of QPX7831, an orally bioavailable prodrug of boronic acid β-lactamase inhibitor QPX7728. J Med Chem 2021; 64 (23) 17523-17529
- 72 Trout RE, Zulli A, Mesaros E. et al. Discovery of VNRX-7145 (VNRX-5236 Etzadroxil): an orally bioavailable β-lactamase inhibitor for enterobacterales expressing ambler class A, C, and D enzymes. J Med Chem 2021; 64 (14) 10155-10166
- 73 Wang YL, Liu S, Yu ZJ. et al. Structure-based development of (1-(3′-mercaptopropanamido)methyl)boronic acid derived broad-spectrum, dual-action inhibitors of metallo- and serine-β-lactamases. J Med Chem 2019; 62 (15) 7160-7184
- 74 Hurdle JG, O'Neill AJ, Chopra I. Prospects for aminoacyl-tRNA synthetase inhibitors as new antimicrobial agents. Antimicrob Agents Chemother 2005; 49 (12) 4821-4833
- 75 Pak D, Kim Y, Burton ZF. Aminoacyl-tRNA synthetase evolution and sectoring of the genetic code. Transcription 2018; 9 (04) 205-224
- 76 Bouz G, Zitko J. Inhibitors of aminoacyl-tRNA synthetases as antimycobacterial compounds: an up-to-date review. Bioorg Chem 2021; 110: 104806
- 77 Zhang P, Ma S. Recent development of leucyl-tRNA synthetase inhibitors as antimicrobial agents. MedChemComm 2019; 10 (08) 1329-1341
- 78 Palencia A, Crépin T, Vu MT, Lincecum Jr TL, Martinis SA, Cusack S. Structural dynamics of the aminoacylation and proofreading functional cycle of bacterial leucyl-tRNA synthetase. Nat Struct Mol Biol 2012; 19 (07) 677-684
- 79 Bowers GD, Tenero D, Patel P. et al. Disposition and metabolism of GSK2251052 in humans: a novel boron-containing antibiotic. Drug Metab Dispos 2013; 41 (05) 1070-1081
- 80 Palencia A, Liu RJ, Lukarska M. et al. Cryptosporidium and toxoplasma parasites are inhibited by a benzoxaborole targeting leucyl-tRNA synthetase. Antimicrob Agents Chemother 2016; 60 (10) 5817-5827
- 81 Seiradake E, Mao W, Hernandez V. et al. Crystal structures of the human and fungal cytosolic Leucyl-tRNA synthetase editing domains: a structural basis for the rational design of antifungal benzoxaboroles. J Mol Biol 2009; 390 (02) 196-207
- 82 Tandon S, Manhas R, Tiwari N. et al. Deciphering the interaction of benzoxaborole inhibitor AN2690 with connective polypeptide 1 (CP1) editing domain of Leishmania donovani leucyl-tRNA synthetase. J Biosci 2020; 45: 63
- 83 Rock FL, Mao W, Yaremchuk A. et al. An antifungal agent inhibits an aminoacyl-tRNA synthetase by trapping tRNA in the editing site. Science 2007; 316 (5832): 1759-1761
- 84 Palencia A, Li X, Bu W. et al. Discovery of novel oral protein synthesis inhibitors of Mycobacterium tuberculosis that target leucyl-tRNA synthetase. Antimicrob Agents Chemother 2016; 60 (10) 6271-6280
- 85 Hernandez V, Crépin T, Palencia A. et al. Discovery of a novel class of boron-based antibacterials with activity against gram-negative bacteria. Antimicrob Agents Chemother 2013; 57 (03) 1394-1403
- 86 Sutcliffe JA. Antibiotics in development targeting protein synthesis. Ann N Y Acad Sci 2011; 1241: 122-152
- 87 Purnapatre KP, Rao M, Pandya M. et al. In vitro and in vivo activities of DS86760016, a novel leucyl-tRNA synthetase inhibitor for gram-negative pathogens. Antimicrob Agents Chemother 2018; 62 (04) e01987-e17
- 88 O'Dwyer K, Spivak AT, Ingraham K. et al. Bacterial resistance to leucyl-tRNA synthetase inhibitor GSK2251052 develops during treatment of complicated urinary tract infections. Antimicrob Agents Chemother 2015; 59 (01) 289-298
- 89 Gupta A, Monteferrante C, Rasina D. et al. A polymorphism in leuS confers reduced susceptibility to GSK2251052 in a clinical isolate of staphylococcus aureus. Antimicrob Agents Chemother 2016; 60 (05) 3219-3221
- 90 Li X, Hernandez V, Rock FL. et al. Discovery of a potent and specific M. tuberculosis leucyl-tRNA synthetase inhibitor: (S)-3-(aminomethyl)-4-chloro-7-(2-hydroxyethoxy)benzo[c][1,2]oxaborol-1(3H)-ol (GSK656). J Med Chem 2017; 60 (19) 8011-8026
- 91 Hao G, Li H, Yang F. et al. Discovery of benzhydrol-oxaborole derivatives as Streptococcus pneumoniae leucyl-tRNA synthetase inhibitors. Bioorg Med Chem 2021; 29: 115871
- 92 Hu QH, Liu RJ, Fang ZP. et al. Discovery of a potent benzoxaborole-based anti-pneumococcal agent targeting leucyl-tRNA synthetase. Sci Rep 2013; 3: 2475
- 93 Tan M, Zhu B, Zhou XL. et al. tRNA-dependent pre-transfer editing by prokaryotic leucyl-tRNA synthetase. J Biol Chem 2010; 285 (05) 3235-3244
- 94 Walker GC. Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli . Microbiol Rev 1984; 48 (01) 60-93
- 95 Butala M, Zgur-Bertok D, Busby SJ. The bacterial LexA transcriptional repressor. Cell Mol Life Sci 2009; 66 (01) 82-93
- 96 Courcelle J, Khodursky A, Peter B, Brown PO, Hanawalt PC. Comparative gene expression profiles following UV exposure in wild-type and SOS-deficient Escherichia coli . Genetics 2001; 158 (01) 41-64
- 97 Wade JT, Reppas NB, Church GM, Struhl K. Genomic analysis of LexA binding reveals the permissive nature of the Escherichia coli genome and identifies unconventional target sites. Genes Dev 2005; 19 (21) 2619-2630
- 98 Selwood T, Larsen BJ, Mo CY. et al. Advancement of the 5-Amino-1-(carbamoylmethyl)-1H-1,2,3-triazole-4-carboxamide scaffold to disarm the bacterial SOS response. Front Microbiol 2018; 9: 2961
- 99 Myka KK, Marians KJ. Two components of DNA replication-dependent LexA cleavage. J Biol Chem 2020; 295 (30) 10368-10379
- 100 Sassanfar M, Roberts JW. Nature of the SOS-inducing signal in Escherichia coli. The involvement of DNA replication. J Mol Biol 1990; 212 (01) 79-96
- 101 Luo Y, Pfuetzner RA, Mosimann S. et al. Crystal structure of LexA: a conformational switch for regulation of self-cleavage. Cell 2001; 106 (05) 585-594
- 102 Blainey PC, Luo G, Kou SC. et al. Nonspecifically bound proteins spin while diffusing along DNA. Nat Struct Mol Biol 2009; 16 (12) 1224-1229
- 103 Little JW. Mechanism of specific LexA cleavage: autodigestion and the role of RecA coprotease. Biochimie 1991; 73 (04) 411-421
- 104 Okon M, Pfuetzner RA, Vuckovic M, Little JW, Strynadka NC, McIntosh LP. Backbone chemical shift assignments of the LexA catalytic domain in its active conformation. J Biomol NMR 2005; 31 (04) 371-372
- 105 Cirz RT, Jones MB, Gingles NA. et al. Complete and SOS-mediated response of Staphylococcus aureus to the antibiotic ciprofloxacin. J Bacteriol 2007; 189 (02) 531-539
- 106 Li B, Smith P, Horvath Jr DJ, Romesberg FE, Justice SS. SOS regulatory elements are essential for UPEC pathogenesis. Microbes Infect 2010; 12 (8–9): 662-668
- 107 Mo CY, Culyba MJ, Selwood T. et al. Inhibitors of LexA autoproteolysis and the bacterial SOS response discovered by an academic-industry partnership. ACS Infect Dis 2018; 4 (03) 349-359
- 108 Pagès JM, Masi M, Barbe J. Inhibitors of efflux pumps in Gram-negative bacteria. Trends Mol Med 2005; 11 (08) 382-389
- 109 Nikaido H, Pagès JM. Broad-specificity efflux pumps and their role in multidrug resistance of Gram-negative bacteria. FEMS Microbiol Rev 2012; 36 (02) 340-363
- 110 Li XZ, Plésiat P, Nikaido H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev 2015; 28 (02) 337-418
- 111 Webber MA, Piddock LJ. The importance of efflux pumps in bacterial antibiotic resistance. J Antimicrob Chemother 2003; 51 (01) 9-11
- 112 Piddock LJ. Multidrug-resistance efflux pumps - not just for resistance. Nat Rev Microbiol 2006; 4 (08) 629-636
- 113 Kuroda T, Tsuchiya T. Multidrug efflux transporters in the MATE family. Biochim Biophys Acta 2009; 1794 (05) 763-768
- 114 Jack DL, Yang NM, Saier Jr MH. The drug/metabolite transporter superfamily. Eur J Biochem 2001; 268 (13) 3620-3639
- 115 Pao SS, Paulsen IT, Saier Jr MH. Major facilitator superfamily. Microbiol Mol Biol Rev 1998; 62 (01) 1-34
- 116 Lubelski J, Konings WN, Driessen AJ. Distribution and physiology of ABC-type transporters contributing to multidrug resistance in bacteria. Microbiol Mol Biol Rev 2007; 71 (03) 463-476
- 117 Nikaido H, Takatsuka Y. Mechanisms of RND multidrug efflux pumps. Biochim Biophys Acta 2009; 1794 (05) 769-781
- 118 Mahmood HY, Jamshidi S, Sutton JM, Rahman KM. Current advances in developing inhibitors of bacterial multidrug efflux pumps. Curr Med Chem 2016; 23 (10) 1062-1081
- 119 Magnet S, Courvalin P, Lambert T. Resistance-nodulation-cell division-type efflux pump involved in aminoglycoside resistance in Acinetobacter baumannii strain BM4454. Antimicrob Agents Chemother 2001; 45 (12) 3375-3380
- 120 Bay DC, Stremick CA, Slipski CJ, Turner RJ. Secondary multidrug efflux pump mutants alter Escherichia coli biofilm growth in the presence of cationic antimicrobial compounds. Res Microbiol 2017; 168 (03) 208-221
- 121 Ma D, Cook DN, Alberti M, Pon NG, Nikaido H, Hearst JE. Molecular cloning and characterization of acrA and acrE genes of Escherichia coli . J Bacteriol 1993; 175 (19) 6299-6313
- 122 Moolenaar RL, Crutcher JM, San Joaquin VH. et al. A prolonged outbreak of Pseudomonas aeruginosa in a neonatal intensive care unit: did staff fingernails play a role in disease transmission?. Infect Control Hosp Epidemiol 2000; 21 (02) 80-85
- 123 Eaves DJ, Ricci V, Piddock LJ. Expression of acrB, acrF, acrD, marA, and soxS in Salmonella enterica serovar Typhimurium: role in multiple antibiotic resistance. Antimicrob Agents Chemother 2004; 48 (04) 1145-1150
- 124 Nishino K, Latifi T, Groisman EA. Virulence and drug resistance roles of multidrug efflux systems of Salmonella enterica serovar Typhimurium. Mol Microbiol 2006; 59 (01) 126-141
- 125 Willers C, Wentzel JF, du Plessis LH, Gouws C, Hamman JH. Efflux as a mechanism of antimicrobial drug resistance in clinical relevant microorganisms: the role of efflux inhibitors. Expert Opin Ther Targets 2017; 21 (01) 23-36
- 126 Costa SS, Viveiros M, Amaral L, Couto I. Multidrug efflux pumps in Staphylococcus aureus: an update. Open Microbiol J 2013; 7: 59-71
- 127 Jang S. Multidrug efflux pumps in Staphylococcus aureus and their clinical implications. J Microbiol 2016; 54 (01) 1-8
- 128 Gill MJ, Brenwald NP, Wise R. Identification of an efflux pump gene, pmrA, associated with fluoroquinolone resistance in Streptococcus pneumoniae . Antimicrob Agents Chemother 1999; 43 (01) 187-189
- 129 Serçinoğlu O, Senturk D, Altinisik Kaya FE. et al. Identification of novel inhibitors of the ABC transporter BmrA. Bioorg Chem 2020; 105: 104452
- 130 Lacabanne D, Orelle C, Lecoq L. et al. Flexible-to-rigid transition is central for substrate transport in the ABC transporter BmrA from Bacillus subtilis . Commun Biol 2019; 2: 149
- 131 Choudhuri BS, Bhakta S, Barik R, Basu J, Kundu M, Chakrabarti P. Overexpression and functional characterization of an ABC (ATP-binding cassette) transporter encoded by the genes drrA and drrB of Mycobacterium tuberculosis . Biochem J 2002; 367 (Pt 1): 279-285
- 132 Li XZ, Nikaido H. Efflux-mediated drug resistance in bacteria. Drugs 2004; 64 (02) 159-204
- 133 Poole K. Pseudomonas aeruginosa: resistance to the max. Front Microbiol 2011; 2: 65
- 134 Wang Y, Venter H, Ma S. Efflux pump inhibitors: a novel approach to combat efflux-mediated drug resistance in bacteria. Curr Drug Targets 2016; 17 (06) 702-719
- 135 Lomovskaya O, Warren MS, Lee A. et al. Identification and characterization of inhibitors of multidrug resistance efflux pumps in Pseudomonas aeruginosa: novel agents for combination therapy. Antimicrob Agents Chemother 2001; 45 (01) 105-116
- 136 Yu EW, Aires JR, Nikaido H. AcrB multidrug efflux pump of Escherichia coli: composite substrate-binding cavity of exceptional flexibility generates its extremely wide substrate specificity. J Bacteriol 2003; 185 (19) 5657-5664
- 137 Otto M. Community-associated MRSA: what makes them special?. Int J Med Microbiol 2013; 303 (6–7): 324-330
- 138 Craft KM, Nguyen JM, Berg LJ, Townsend SD. Methicillin-resistant Staphylococcus aureus (MRSA): antibiotic-resistance and the biofilm phenotype. MedChemComm 2019; 10 (08) 1231-1241
- 139 Brawley DN, Sauer DB, Li J. et al. Structural basis for inhibition of the drug efflux pump NorA from Staphylococcus aureus . Nat Chem Biol 2022; 18 (07) 706-712
- 140 Fontaine F, Hequet A, Voisin-Chiret AS. et al. First identification of boronic species as novel potential inhibitors of the Staphylococcus aureus NorA efflux pump. J Med Chem 2014; 57 (06) 2536-2548
- 141 Fontaine F, Héquet A, Voisin-Chiret AS. et al. Boronic species as promising inhibitors of the Staphylococcus aureus NorA efflux pump: study of 6-substituted pyridine-3-boronic acid derivatives. Eur J Med Chem 2015; 95: 185-198
- 142 Nielsen FH. Update on human health effects of boron. J Trace Elem Med Biol 2014; 28 (04) 383-387
- 143 Adachi S, Cognetta III AB, Niphakis MJ. et al. Facile synthesis of borofragments and their evaluation in activity-based protein profiling. Chem Commun (Camb) 2015; 51 (17) 3608-3611
- 144 António JPM, Russo R, Carvalho CP, Cal PMSD, Gois PMP. Boronic acids as building blocks for the construction of therapeutically useful bioconjugates. Chem Soc Rev 2019; 48 (13) 3513-3536
