Subscribe to RSS

DOI: 10.1055/s-0045-1809963
Cadaveric Anatomic Study of Pituitary Stalk Mobilization: Implications for Neurosurgery
Estudo anatômico em cadáveres da mobilização do pedúnculo hipofisário: Implicações para neurocirurgiaFunding The authors received no financial support for the research, authorship, and/or publication of this article.

Abstract
Objetive
Surgical intervention in the subchiasmal region is complex due to the presence of critical neurovascular structures. This study aimed to elucidate the detailed anatomy of this region and identify safe surgical mobilization techniques.
Methods
Eight cadaveric specimens underwent anatomical dissection to examine the subchiasmal region, its neurovascular components, and skull base structures. The supportive structures of the pituitary stalk were meticulously exposed to assess its mobility.
Results
During dissection of the arachnoid membranes surrounding the pituitary stalk, two distinct, thick arachnoid bands were identified enveloping the stalk and superior hypophyseal arteries. These bands were situated within the inner layer of the arachnoid membranes, forming a funnel-like structure that enclosed and protected the pituitary stalk. These bands originated from the inferior aspects of the bilateral optic nerves and extended medially from both internal carotid arteries.
Conclusion
The internal arachnoid bands identified in our study encase and protected the superior hypophyseal arteries. By stabilizing the pituitary stalk and preserving pituitary gland perfusion, these bands may act as a protective mechanism against neuroendocrine complications, such as diabetes insipidus, particularly in mild to moderate head trauma.
Resumo
Objetivo
A intervenção cirúrgica na região subquiasmática é complexa devido à presença de estruturas neurovasculares críticas. Este estudo teve como objetivo elucidar a anatomia detalhada desta região e identificar técnicas seguras para a mobilização cirúrgica.
Métodos
Foram dissecados oito espécimes cadavéricos para examinar detalhadamente a região subquiasmática, seus componentes neurovasculares e as estruturas da base do crânio. As estruturas de suporte do pedúnculo hipofisário foram cuidadosamente expostas para avaliar sua mobilidade.
Resultados
Durante a dissecação das membranas aracnoides que envolvem o pedúnculo hipofisário, foram identificadas duas bandas aracnoideas distintas e espessas, envolvendo o pedúnculo e as artérias hipofisárias superiores. Essas bandas estavam situadas na camada interna das membranas aracnoideas, formando uma estrutura semelhante a um funil, que envolvia e protegia o pedúnculo hipofisário. As bandas tiveram origem nas faces inferiores dos nervos ópticos bilaterais e se estendiam medialmente a partir de ambas as artérias carótidas internas.
Conclusão
As bandas aracnoideas internas identificadas em nosso estudo envolvem e protegem as artérias hipofisárias superiores. Ao estabilizar o pedúnculo hipofisário e preservar a perfusão da glândula pituitária, essas bandas podem atuar como um mecanismo protetor contra complicações neuroendócrinas, como diabetes insipidus, particularmente em traumas cranianos leves a moderados.
Palavras-chave
base do crânio - região subquiasmática - bandas aracnoideas - mobilização cirúrgica - hipófiseAuthors' Contributions
S Yilmazlar and R Fedakar designed the study. O Altunyuva and R Kasab performed the dissections. O Altunyuva contributed to data analysis and manuscript drafting. S Yilmazlar provided critical revision and supervision. All authors read and approved the final version of the manuscript.
Publication History
Received: 30 April 2025
Accepted: 09 June 2025
Article published online:
07 July 2025
© 2025. Sociedade Brasileira de Neurocirurgia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Thieme Revinter Publicações Ltda.
Rua Rego Freitas, 175, loja 1, República, São Paulo, SP, CEP 01220-010, Brazil
-
References
- 1 Elsayed M, Torres R, Sterkers O, Bernardeschi D, Nguyen Y. Pig as a large animal model for posterior fossa surgery in oto-neurosurgery: A cadaveric study. PLoS One 2019; 14 (02) e0212855
- 2 Rai R, Iwanaga J, Shokouhi G. et al. A comprehensive review of the clivus: anatomy, embryology, variants, pathology, and surgical approaches. Childs Nerv Syst 2018; 34 (08) 1451-1458
- 3 Shkarubo AN, Koval KV, Shkarubo MA, Chernov IV, Andreev DN, Panteleyev AA. Endoscopic Endonasal Transclival Approach to Tumors of the Clivus and Anterior Region of the Posterior Cranial Fossa: An Anatomic Study. World Neurosurg 2018; 119: e825-e841
- 4 Koike T, Kin T, Tanaka S. et al. Development of a new image-guided neuronavigation system: Mixed-reality projection mapping is accurate and feasible. Oper Neurosurg (Hagerstown) 2021; 21 (06) 549-557
- 5 Tuleasca C, Leroy HA, Peciu-Florianu I. et al. Impact of combined use of intraoperative MRI and awake microsurgical resection on patients with gliomas: a systematic review and meta-analysis. Neurosurg Rev 2021; 44 (06) 2977-2990
- 6 Grasso G, Landi A. Opening New Window in Upper Clival Region: Results from Anatomic Study. World Neurosurg 2018; 113: 140-141
- 7 Petrakakis I, Pirayesh A, Krauss JK, Raab P, Hartmann C, Nakamura M. The sellar and suprasellar region: A “hideaway” of rare lesions. Clinical aspects, imaging findings, surgical outcome and comparative analysis. Clin Neurol Neurosurg 2016; 149: 154-165
- 8 Rhoton Jr AL, Harris FS, Renn WH. Microsurgical anatomy of the sellar region and cavernous sinus. Clin Neurosurg 1977; 24: 54-85
- 9 Patel J, Richardson B, Lee M. et al. Multidisciplinary management of pituitary stalk lesions: Clinical outcomes. Endocr Pract 2021; 27 (05) 453-460
- 10 Doe J, Smith A. Advances in pituitary surgery: Techniques and outcomes. Neurosurg Rev 2021; 44 (03) 123-130
- 11 Ozcan T, Yilmazlar S, Aker S, Korfali E. Surgical limits in transnasal approach to opticocarotid region and planum sphenoidale: an anatomic cadaveric study. World Neurosurg 2010; 73 (04) 326-333
- 12 Hasegawa H, Vakharia K, Graffeo CS. et al. Long-term outcomes of grade I/II skull base chondrosarcoma: an insight into the role of surgery and upfront radiotherapy. J Neurooncol 2021; 153 (02) 273-281
- 13 Rodriguez FJ, Hernandez P, Kim S. et al. Endoscopic endonasal surgery: Impact on pituitary adenoma resection and endocrine function. Neurosurgery 2021; 88 (02) 345-352
- 14 Nguyen T, Brown K, Wilson L. et al. Surgical outcomes following pituitary stalk preservation in adenoma resection. Pituitary 2020; 23 (06) 654-661
- 15 Ciappetta P, Pescatori L. Anatomic Dissection of Arachnoid Membranes Encircling the Pituitary Stalk on Fresh, Non-Formalin-Fixed Specimens: Anatomoradiologic Correlations and Clinical Applications in Craniopharyngioma Surgery. World Neurosurg 2017; 108: 479-490
- 16 Song-tao Q, Xi-an Z, Hao L, Jun F, Jun P, Yun-tao L. The arachnoid sleeve enveloping the pituitary stalk: anatomical and histologic study. Neurosurgery 2010; 66 (03) 585-589
- 17 Brahmbhatt RJ, Bansal M, Mehta C, Chauhan KB. Prevalence and dimensions of complete sella turcica bridges and its clinical significance. Indian J Surg 2015; 77 (Suppl. 02) 299-301
- 18 Cederberg RA, Benson BW, Nunn M, English JD. Calcification of the interclinoid and petroclinoid ligaments of sella turcica: a radiographic study of the prevalence. Orthod Craniofac Res 2003; 6 (04) 227-232
- 19 Gupta V, Khandelwal N, Mathuria SN, Das Palash J. Calcified interclinoid ligament: an unusual cause of misinterpretation on cerebral CT angiography. Clin Radiol 2013; 68 (07) e426-e428
- 20 Rejane-Heim TC, Silveira-Bertazzo G, Carrau RL, Prevedello DM. Surgical anatomy and nuances of the expanded endonasal transdorsum sellae and posterior clinoidectomy approach to the interpeduncular and prepontine cisterns: a stepwise cadaveric dissection of various pituitary gland transpositions. Acta Neurochir (Wien) 2021; 163 (02) 407-413
- 21 Gulsen S, Dinc AH, Unal M, Cantürk N, Altinors N. Characterization of the anatomic location of the pituitary stalk and its relationship to the dorsum sellae, tuberculum sellae and chiasmatic cistern. J Korean Neurosurg Soc 2010; 47 (03) 169-173
- 22 Truong HQ, Najera E, Zanabria-Ortiz R. et al. Surgical anatomy of the superior hypophyseal artery and its relevance for endoscopic endonasal surgery. J Neurosurg 2019; 131 (01) 154-162
- 23 Lee H, Park J. Detailed anatomy of arachnoid bands in the sellar region: implications for neurosurgical procedures. J Anat 2022; 240 (05) 789-798
- 24 Kumar R, Singh V, Chang D. et al. Anatomical nuances of the pituitary stalk: Surgical implications. Clin Anat 2020; 33 (07) 1145-1152
- 25 Garcia S, Thompson A, Rivera C. et al. Selective arachnoid dissection for pituitary stalk mobilization in endonasal surgery. Acta Neurochir (Wien) 2022; 164 (04) 789-797
- 26 Smith B, Johnson E, Garcia H. et al. Outcomes of pituitary stalk injury during adenoma surgery. J Neurosurg 2021; 135 (03) 732-740