Semin Reprod Med 2000; 18(2): 171-184
DOI: 10.1055/s-2000-12556
Copyright © 2000 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Oocyte and Embryo Polarity

Lynette A. Scott
  • The A.R.T. Institute of Washington DC, Inc., Walter Reed Army Medical Center, Washington, DC
Further Information

Publication History

Publication Date:
31 December 2000 (online)

ABSTRACT

The development of all low-order animals and noneutherian mammals follows an organized, polarized directional course from fertilization through fetal development. New evidence points to a fundamental polarization during all steps of mammalian development, from the early oocyte through fertilization and gastrulation. The generator of this polarization is primarily at the genetic level, with the results of gene expression and checkpoints being manifested in phenotype. Although cell-cell interactions reinforce the polarization of the embryo, they are not the underlying means of establishing axes in eutherian embryos. The ability of mammalian cells to remain totipotent is only partial, with little evidence that isolated blastomeres can result in full fetal development. The isolated blastomere can, however, contribute to development if reintroduced into a polarized environment. Polarization begins in the unovulated oocyte and is reinforced at fertilization. The axes and polarization established at fertilization endure through to the blastocyst stage and define the axes during gastrulation and fetal development.

REFERENCES

  • 1 Edwards R G, Beard H K. Oocyte polarity and cell determination in early mammalian embryos.  Mol Hum Reprod . 1997;  3 863-905
  • 2 Gardner R L. Can developmentally significant spatial patterning of the egg be discounted in mammals?.  Hum Reprod Update . 1996;  2 3-27
  • 3 Hartwell L H, Weinert T A. Checkpoints: controls that ensure the order of cell cycle events.  Science . 1989;  246 629-634
  • 4 Nasmyth K. Putting the cell cycle in order.  Science . 1996;  274 1643-1645
  • 5 Brownlee C, Bouget F. Polarity determination in Fucus: from zygote to multicellular embryo.  Semin Cell Dev Biol . 1998;  9 179-185
  • 6 St Johnston D, Nusslein-Volhard C. The origin of polarity and pattern in the Drosophila embryo.  Cell Dev . 1992;  68 201-219
  • 7 McGinnis, Krumiauf R. Homeobox genes and axial patterning.  Cell . 1992;  68 283-302
  • 8 Kemphues K J, Strome S. Fertilization and establishment of polarity in the embryo. In: Riddle DL, Blumenthal T, Meyer BJ, Priess JR, eds. Cold Spring Harbor Monograph Series: C elegans II. Cold Spring Harbor, NY Cold Spring Harbor Laboratory Press 1988: 335-359
  • 9 Seydoux G, Fire A. Soma-germline asymmetry in the distribution of embryonic RNAs in Caenorhabditis elegans Development .  1994;  120 2823-2834
  • 10 Schnabel R, Priess J R. Specification of cell fates in the early embryo. In: Riddle DL, Blumenthal T, Meyer BJ, Priess JR, eds. Cold Spring Harbor Monograph Series: C. elegans II. Vol. Monograph 33. Cold Spring Harbor, NY Cold Spring Harbor Laboratory Press 1988: 335-359
  • 11 Kloc M, Etkin L D. Two distinct pathways for the localization of RNA at the vegetal cortex in Xenopus oocytes.  Development . 1995;  121 287-297
  • 12 Gerhart J. Mechanisms regulating pattern formation in the amphibian egg and embryo. In: Goldberger R, ed. Biological Regulation and Development Vol. 2. New York: Plenum 1980: 130-316
  • 13 Gurdon J. The generation of diversity and pattern in animal development.  Cell . 1992;  68 185-199
  • 14 Johnson M, Ziomek C. The foundation of two distinct cell linages within the mouse morula.  Cell . 1981;  24 71-80
  • 15 Zernicka-Goetz M. Mammalian eggs lacking either animal or vegetal poles.  Development . 1998;  125 4803-4808
  • 16 Van Blerkom J, Antczak M, Schroder R. The developmental potential of the human oocyte is related to the dissolved oxygen content of follicular fluid: an association with vascular endothelial growth factor levels and perifollicular blood flow characteristic.  Hum Reprod . 1997;  12 1047-1055
  • 17 Eppig J. Intercommunication between mammalian occytes and companion somatic cells.  BioEssays . 1991;  13 569-574
  • 18 Antczak M, Van Blerkom J. Oocyte influences on early development: the regulatory proteins leptin and STAT3 are polarized in muse and human oocytes differentially distributed within the cells of the preimplantation stage embryo.  Mol Hum Reprod . 1997;  3 1067-1086
  • 19 Scott L A. Oocyte and embryo culture. In: May J, Keel B, DeJong C, eds. CRC Handbook. Boca Raton, FL CRC Press 2000: 197-219
  • 20 Hardarson T, Lundin K, Hamberger L. The position of the metaphase II spindle cannot be predicted by the location of the first polar body in the human oocyte.  Hum Reprod . 2000;  15 1372-1376
  • 21 Silva C P, Kommineni K, Oldenbourg R, Keefe D. The first polar body does not predict accurately the location of the metaphase II meiotic spindle in mammalian oocytes.  Fertil Steril . 1999;  71 719-721
  • 22 Sousa M, Tesarik J. Ultrastructural analysis of fertilization failure after intracytoplasmic sperm injection.  Hum Reprod . 1994;  9 2374-2380
  • 23 Kono T, Kwon O Y, Nakahara T. Development of enucleated mouse oocytes reconstituted with embryonic nuclei.  J Reprod Fertil . 1991;  93 382-394
  • 24 Garello C, Baker H, Rai J. Pronuclear orientation, polar body placement, and embryo quality after intracytoplasmic sperm injection and in-vitro fertilization: further evidence for polarity in human occytes?.  Hum Reprod . 1999;  14 2588-2595
  • 25 Roegiers F, McDougall A, Sardet C. The sperm entry point defines the origin of the calcium-induced contraction wave that directs the first phase of cytoplasmic reorganization in the ascidian egg.  Development . 1995;  121 3457-3466
  • 26 Pickering S J, Johnson M H, Braude P R, Houliston E. Cytoskeletal organization in fresh, aged and spontaneously activated human oocytes.  Hum Reprod . 1988;  3 978-989
  • 27 Santella L, Alikani M, Talansky B E, Cohen J, Dale B. Is the human oocyte plasma membrane polarized?.  Hum Reprod . 1992;  7 999-1003
  • 28 Levron J, Willasden S, Munne S, Cohen J. Formation of male pronuclei in partitioned human oocytes.  Biol Reprod . 1995;  53 209-213
  • 29 Payne D, Flaherty S P, Barry M F, Mathews C D. Preliminary observations on polar body extrusion and pronuclear formation in human oocytes using time-lapse video cinematography.  Hum Reprod . 1997;  12 532-541
  • 30 Schatten G. The centrosome and its mode of inheritance: the reduction of the centrosome during gametogenesis and its restoration during fertilization.  Dev Biol . 1994;  165 299-335
  • 31 Blake M, Garrisi J, Tomkin G, Cohen J. Sperm deposition site during ICSI affects fertilization and development.  Fertil Steril . 2000;  73 31-37
  • 32 Van der Westerlaken A J L, Helmerhorst F M, Hermans J, Naaktgeboren N. Intracytoplasmic sperm injection: position of the polar body affects pregnancy rate.  Hum Reprod . 1999;  14 2565-2569
  • 33 Lui L, Trimarchi J R, Oldenbourg R, Keefe D L. Increased birefringence in the meiotic spindle provides a new marker for the onset of activation in living oocytes.  Biol Reprod . 2000;  63 251-258
  • 34 Edwards R G, Beard H K. Hypothesis: sex determination and germline formation are committed at the pronuclear stage in mammalian embryos.  Mol Hum Reprod . 1999;  5 595-606
  • 35 Scott L A, Smith S. The successful use of pronuclear embryo transfers the day following oocyte retrieval.  Hum Reprod . 1988;  13 1003-1013
  • 36 Barnett D K, Kimura J, Bavister B D. Translocation of active mitochondria during hamster preimplantation embryo development studied by confocal laser scanning microscopy.  Dev Dyn . 1996;  205 64-72
  • 37 Muggleton-Harris A L, Brown J JG. Cytoplasmic factors influence mitochondrial reorganization and resumption of cleavage during culture of early mouse embryos.  Hum Reprod . 1988;  3 1020-1028
  • 38 Scott L A, Alvero R, Leondires M, Miller B T. The morphology of human pronuclear embryos is positively related to blastocyst development and implantation.  Hum Reprod . 2000;  15 2394-2903
  • 39 Gardner R L. The early blastocyst is bilaterally symmetrical and its axis of symmetry is aligned with the animal-vegetal axis of the zygote in the mouse.  Development . 1997;  124 289-301
  • 40 Tarkowski A K, Wroblewska J. Development of blastomeres of mouse eggs isolated at the 4- and 8-cell stage.  J Embryol Exp Morphol . 1967;  18 155-180
  • 41 Gardner R L, Nichols J. An investigation of the fate of cells transplanted orthotopically between morulae/nascent blastocysts in the mouse.  Hum Reprod . 1991;  6 25-35
  • 42 Gardner R L. Scrambled or bisected mouse eggs and the basis of patterning in mammals.  BioEssays . 1999;  21 271-274
  • 43 Goddard M J, Pratt H PM. Control of events during early cleavage of the mouse embryo: an analysis of the 2-cell block.  J Embryol Exp Morphol . 1983;  73 111-133
  • 44 Matsumoto K, Anzai M, Nakagata N, Takahashi A, Miyata K. Onset of paternal gene activation in early mouse embryos fertilized with transgenic mouse sperm.  Mol Reprod Dev . 1994;  39 136-140
  • 45 Braude P, Bolton V, Moore S. Human gene expression first occurs between the four and eight-cell stages of preimplantation development.  Nature . 1988;  332 459-461
  • 46 Pedesen R A, Wu K, Balakier H. Origin of the inner cell mass in mouse embryos: cell lineage analysis by microinjection.  Dev Biol . 1986;  117 581-595
  • 47 Gardner R. Flow of cells from polar to mural trophectoderm is polarized in the mouse blastocyst.  Hum Reprod . 2000;  15 694-701
  • 48 Nicols J, Gardner R L. Heterogeneous differentiation of external cells in individual isolated early mouse inner cell masses in culture.  J Embryol Exp Morphol . 1984;  80 225-240
  • 49 Flemming T P, Warren P D, Chisholm T C, Johnson M H. Trophectodermal processes regulate the expression of totipotency within the inner cell mass of the mouse expanding blastocyst.  J Embryol Exp Morphol . 1984;  84 63-90
  • 50 Smith L J. Embryonic axis orientation in the mouse and its correlation with blastocysts' relationships to the uterus: part 1. Relationship.  J Embryol Exp Morphol . 1980;  55 257-277
  • 51 Smith L J. Embryonic axis orientation in the mouse and its correlation with blastocysts' relationship to the uterus: part II. Relationships from 4 1/2 to 9 1/2 days.  J Embryol Exp Morphol . 1985;  89 15-35