Viszeralchirurgie 2000; 35(2): 95-101
DOI: 10.1055/s-2000-7400
ÜBERSICHT
© Georg Thieme Verlag Stuttgart · New York

Der Schilddrüsenknoten: molekulargenetische und zytogenetische Aspekte

K.-M. Schulte, H.-D. Röher
  • Klinik für Allgemeine Chirurgie und Unfallchirurgie Heinrich-Heine-Universität Düsseldorf
Further Information

Publication History

Publication Date:
31 December 2000 (online)

Zusammenfassung.

Knotenbildungen der Schilddrüse sind in Jodmangelgebieten überaus häufig. Während die genauen Zusammenhänge des Jodmangels mit der Knotenbildung unklar bleiben, ist eine Reihe molekularer Veränderungen bei bestimmten Knotentypen inzwischen klar zu fassen. Die Mehrzahl benigner und fast alle malignen Knoten entstehen monoklonal und sind damit echte Tumoren. Toxische Adenome gehen häufig auf Mutationen des TSH-Rezeptors zurück. Euthyreote Knotenstrumen werden mit Veränderungen auf Chromosom 2 und 14 in Verbindung gebracht. Das papilläre Schilddrüsenkarzinom weist Fusionsgene auf, die zu einer Tyrosin-Kinase-Aktivierung führen. Follikuläre Neoplasien tragen häufig ras-Mutationen. Das anaplastische Schilddrüsenkarzinom ist eng mit p53 Mutationen assoziiert. Unmittelbare therapeutische Konsequenzen ergeben sich aus diesen Erkenntnissen bisher nicht. Allerdings öffnen diese molekularen Kenntnisse den Weg zu einer hoch-sensitiven und spezifischen präoperativen Diagnostik der Schilddrüsentumoren.

The thyroid nodule- molecular, genetic and cytogenetic aspects.

Formation of thyroid nodules is frequent in areas with iodine deficiency. The sequence leading from iodine deficiency to formation of nodules is only partially understood. However, knowledge about a number of molecular aberrations in different types of nodules has considerably grown. The majority of benign and nearly all malignant thyroid nodules are of monoclonal origin and therefore represent true tumors. Toxic adenoma is frequently caused by mutations of the TSH receptor. Euthyroid multinodular goiter may be associated with changes on chromosomes 2 and 14. Papillary thyroid cancer is frequently caused by fusion genes resulting in activation of tyrosine kinases. Follicular neoplasms often carry ras mutations. Anaplastic thyroid cancer is closely associated with p53 mutations. As yet, there are no direct therapeutic consequences of these discoveries. However, the detalled molecular knowledge offers the perspective of a highly sensitive and specific pre-operative diagnosis of thyroid nodules.

Literatur

  • 1 Studer H, Peter H J, Gerber H. Natural heterogeneity of thyroid cells: the basis for understanding thyroid function and nodular goiter growth.  Endocr Rev. 1989;  10(2) 125-135
  • 2 Namba H, Matsuo K, Fagin J A. Clonal composition of benign and malignant human thyroid tumors.  Journal of Clinical Investigation. 1990;  86(1) 120-125
  • 3 Apel R L, Ezzat S, Bapat B V. et al . Clonality of thyroid nodules in sporadic goiter.  Diagn Mol Pathol. 1995;  4(2) 113-121
  • 4 Kopp P, Kimura E T, Aeschimann S. et al . Polyclonal and monoclonal thyroid nodules coexist within human multinodular goiters.  J Clin Endocrinol Metab. 1994;  79(1) 134-139
  • 5 Aeschimann S, Kopp P, Kimura E T. et al . Morphological and functional polymorphism within clonal thyroid nodules.  J Clin Endocrinol Metab. 1993;  77(3) 846-851
  • 6 Krohn K, Fuhrer D, Holzapfel H P, Paschke R. Clonal origin of toxic thyroid nodules with constitutively activating thyrotropin receptor mutations.  J Clin Endocrinol Metab. 1998;  83(1) 130-134
  • 7 Chung D H, Kang G H, Kim W H, Ro J Y. Clonal analysis of a solitary follicular nodule of the thyroid with the polymerase chain reaction method.  Mod Pathol. 1999;  12(3) 265-271
  • 8 Kim H, Piao Z, Park C. et al . Clinical significance of clonality in thyroid nodules.  Br J Surg. 1998;  85(8) 1125-1128
  • 9 Vogelstein B, Kinzler K W. The multistep nature of cancer.  Trends Genet. 1993;  9(4) 138-141
  • 10 Wynford-Thomas D. In vitro models of thyroid cancer.  Cancer Surveys. 1993;  16 115-134
  • 11 Wynford-Thomas D. Molecular basis of epithelial tumorigenesis: the thyroid model.  Critical Reviews in Oncogenesis. 1993;  4 1-23
  • 12 Wynford-Thomas D. Telomeres, p53 and cellular senescence.  Oncol Res. 1996;  8(10-11) 387-398
  • 13 Wynford-Thomas D, Jones C J, Wyllie F S. The tumour suppressor gene p53 as a regulator of proliferative life- span and tumour progression.  Biol Signals. 1996;  5(3) 139-153
  • 14 Wynford-Thomas D. [Molecular basis of tumors arising in thyroid follicular cells].  Ann Chir. 1999;  53(3) 237-253
  • 15 Gauger P G, Reeve T S, Delbridge L W. Intraoperative decision making in follicular lesions of the thyroid: is tumor size important?.  J Am Coll Surg. 1999;  189(3) 253-258
  • 16 Derwahl M, Broecker M, Kraiem Z. Clinical review 101: Thyrotropin may not be the dominant growth factor in benign and malignant thyroid tumors.  J Clin Endocrinol Metab. 1999;  84(3) 829-834
  • 17 Roger P P, Dumont J E. Thyrotropin is a potent growth factor for normal human thyroid cells in primary culture.  Biochem Biophys Res Commun. 1987;  149(2) 707-711
  • 18 Roger P, Taton M, Van Sande J, Dumont J E. Mitogenic effects of thyrotropin and adenosine 3′,5′-monophosphate in differentiated normal human thyroid cells in vitro.  J Clin Endocrinol Metab. 1988;  66(6) 1158-1165
  • 19 Roger P P, Christophe D, Dumont J E, Pirson I. The dog thyroid primary culture system: a model of the regulation of function, growth and differentiation expression by cAMP and other well- defined signaling cascades.  Eur J Endocrinol. 1987;  137(6) 579-598
  • 20 Parma J, Duprez L, Van Sande L. Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas.  Nature. 1993;  365 649-651
  • 21 Paschke R, Ludgate M. The thyrotropin receptor in thyroid diseases.  N Engl J Med. 1997;  337(23) 1675-1681
  • 22 Thomas J S, Leclere J, Hartemann P. et al . Familial hyperthyroidism without evidence of autoimmunity.  Acta Endocrinol (Copenh). 1982;  100(4) 512-518
  • 23 Duprez L, Parma J, Van Sande J. et al . Germline mutations in the thyrotropin receptor gene cause non-autoimmune autosomal dominant hyperthyroidism.  Nat Genet. 1994;  7(3) 396-401
  • 24 Fuhrer D, Wonerow P, Willgerodt H, Paschke R. Identification of a new thyrotropin receptor germline mutation (Leu629Phe) in a family with neonatal onset of autosomal dominant nonautoimmune hyperthyroidism.  J Clin Endocrinol Metab. 1997;  82(12) 4234-4238
  • 25 Fuhrer D, Mix M, Willgerodt H. et al . Autosomal dominant nonautoimmune hyperthyroidism. Clinical features- diagnosis-therapy.  Exp Clin Endocrinol Diabetes. 1998;  106(Suppl 4) S10-S15
  • 26 Paschke R, Tonacchera M, Van Sande J. et al . Identification and functional characterization of two new somatic mutations causing constitutive activation of the thyrotropin receptor in hyperfunctioning autonomous adenomas of the thyroid.  J Clin Endocrinol Metab. 1994;  79(6) 1785-1789
  • 27 Parma J, Van Sande J, Swillens S. et al . Somatic mutations causing constitutive activity of the thyrotropin receptor are the major cause of hyperfunctioning thyroid adenomas: identification of additional mutations activating both the cyclic adenosine 3′,5′-monophosphate and inositol phosphate-Ca2+ cascades.  Mol Endocrinol. 1995;  9(6) 725-733
  • 28 Kopp P, Muirhead S, Jourdain N. et al . Congenital hyperthyroidism caused by a solitary toxic adenoma harboring a novel somatic mutation (serine281->isoleucine) in the extracellular domain of the thyrotropin receptor.  J Clin Invest. 1997;  100(6) 1634-1639
  • 29 Derwahl M. [Mutations in the thyrotropin receptor gene in the pathogenesis of toxic thyroid adenomas, toxic goiter nodules and autosomal dominant hyperthyroidism].  Z Arztl Fortbild Qualitatssich. 1999;  93(Suppl 1) 25-28
  • 30 Derwahl M, Manole D, Sobke A, Broecker M. Pathogenesis of toxic thyroid adenomas and nodules: relevance of activating mutations in the TSH-receptor and Gs-alpha gene, the possible role of iodine deficiency and secondary and TSH-independent molecular mechanisms.  Exp Clin Endocrinol Diabetes. 1998;  106(Suppl 4) S6-S9
  • 31 Lyons J, Landis C, Harsh G. Two G-protein oncogenes in human endocrine tumors.  Science. 1990;  249 665-660
  • 32 Goretzki P E, Simon D, Roeher H D. G-protein mutations in thyroid tumors.  Experimental and Clinical Endocrinology. 1992;  100(1-2) 14-16
  • 33 Goretzki P E, Lyons J, Stacy-Phipps S. et al . Mutational activation of RAS and GSP oncogenes in differentiated thyroid cancer and their biological implications.  World Journal of Surgery. 1992;  16(4) 576-582
  • 34 Derwahl M, Hamacher C, Russo D. et al . Constitutive activation of the Gs alpha protein-adenylate cyclase pathway may not be sufficient to generate toxic thyroid adenomas.  J Clin Endocrinol Metab. 1996;  81(5) 1898-1904
  • 35 Ludgate M, Gire V, Crisp M. et al . Contrasting effects of activating mutations of GalphaS and the thyrotropin receptor on proliferation and differentiation of thyroid follicular cells.  Oncogene. 1999;  18(34) 4798-4807
  • 36 Fuhrer D, Holzapfel H P, Wonerow P. et al . Somatic mutations in the thyrotropin receptor gene and not in the Gs alpha protein gene in 31 toxic thyroid nodules.  J Clin Endocrinol Metab. 1997;  82(11) 3885-3891
  • 37 Takeshita A, Nagayama Y, Yokoyama N. et al . Rarity of oncogenic mutations in the thyrotropin receptor of autonomously functioning thyroid nodules in Japan.  J Clin Endocrinol Metab. 1995;  80(9) 2607-2611
  • 38 Djuh Y, Galvin M, Rhooms P. et al . Screening for activating mutations of the human TSH-receptor in autonomously functioning thyroid nodules in a North American population.  Thyroid. 1996;  6(Suppl.) S-38
  • 39 Derwahl M. TSH receptor and Gs-alpha gene mutations in the pathogenesis of toxic thyroid adenomas - a note of caution [editorial].  J Clin Endocrinol Metab. 1996;  81(8) 2783-2785
  • 40 Kosugi S, Sato Y, Matsuda A. et al . High prevalence of T354P sodium/iodide symporter gene mutation in Japanese patients with iodide transport defect who have heterogeneous clinical pictures.  J Clin Endocrinol Metab. 1998;  83(11) 4123-4129
  • 41 Fujiwara H, Tatsumi K, Miki K. et al . Recurrent T354P mutation of the Na+/I-symporter in patients with iodide transport defect.  J Clin Endocrinol Metab. 1998;  83(8) 2940-2943
  • 42 Pohlenz J, Refetoff S. Mutations in the sodium/iodide symporter (NIS) gene as a cause for iodide transport defects and congenital hypothyroidism.  Biochimie. 1999;  81(5) 469-476
  • 43 Bignell G R, Canzian F, Shayeghi M. et al . Familial nontoxic multinodular thyroid goiter locus maps to chromosome 14q but does not account for familial nonmedullary thyroid cancer.  Am J Hum Genet. 1997;  61(5) 1123-1130
  • 44 Neumann S, Willgerodt H, Ackermann F. et al . Linkage of familial euthyroid goiter to the multinodular goiter-1 locus and exclusion of the candidate genes thyroglobulin, thyroperoxidase, and Na+/I-symporter.  J Clin Endocrinol Metab. 1999;  84(10) 3750-3756
  • 45 Chen X, Knauf J A, Gonsky R. et al . From amplification to gene in thyroid cancer: a high-resolution mapped bacterial-artificial-chromosome resource for cancer chromosome aberrations guides gene discovery after comparative genome hybridization.  Am J Hum Genet. 1998;  63(2) 625-637
  • 46 Hall-Jackson C A, Jones T, Eccles N G. et al . Induction of cell death by stimulation of protein kinase C in human epithelial cells expressing a mutant ras oncogene: a potential therapeutic target.  Br J Cancer. 1998;  78(5) 641-651
  • 47 Knauf J A, Elisei R, Mochly-Rosen D. et al . Involvement of protein kinase Cepsilon (PKCepsilon) in thyroid cell death. A truncated chimeric PKCepsilon cloned from a thyroid cancer cell line protects thyroid cells from apoptosis.  J Biol Chem. 1999;  274(33) 23414-23425
  • 48 Pierotti M A, Santoro M, Jenkins R B. et al . Characterization of an inversion on the long arm of chromosome 10 juxtaposing D10S170 and RET and creating the oncogenic sequence RET/PTC.  Proceedings of the National Academy of Sciences of the United States of America. 1992;  89(5) 1616-1620
  • 49 Sozzi G, Bongarzone I, Miozzo M. et al . A t(10;17) translocation creates the RET/PTC2 chimeric transforming sequence in papillary thyroid carcinoma.  Genes Chromosomes Cancer. 1994;  9(4) 244-250
  • 50 Santoro M, Dathan N A, Berlingieri M T. et al . Molecular characterization of RET/PTC3; a novel rearranged version of the RETproto-oncogene in a human thyroid papillary carcinoma.  Oncogene. 1994;  9(2) 509-516
  • 51 Greco A, Pierotti M A, Bongarzone I. et al . TRK-T1 is a novel oncogene formed by the fusion of TPR and TRK genes in human papillary thyroid carcinomas.  Oncogene. 1992;  7(2) 237-242
  • 52 Greco A, Mariani C, Miranda C. et al . The DNA rearrangement that generates the TRK-T3 oncogene involves a novel gene on chromosome 3 whose product has a potential coiled-coil domain.  Mol Cell Biol. 1995;  15(11) 6118-6127
  • 53 Aman P. Fusion genes in solid tumors.  Semin Cancer Biol. 1999;  9(4) 303-318
  • 54 Lemoine N R, Hughes C M, Gullick W J. et al . Abnormalities of the EGF receptor system in human thyroid neoplasia.  International Journal of Cancer. 1991;  49(4) 558-561
  • 55 Di Renzo M F, Olivero M, Serini G. et al . Overexpression of the c-MET/HGF receptor in human thyroid carcinomas derived from the follicular epithelium.  Journal of Endocrinological Investigation. 1995;  18(2) 134-139
  • 56 Belfiore A, Costantino A, Gangemi P. et al . Low/absent Met/HGF-R expression in papillary thyroid carcinomas: a prognostic factor for distant metastasis.  Journal of Endocrinological Investigation. 1996;  19 57
  • 57 Schulte K-M, Antoch G, Ellrichmann M. et al . Regulation of the HGF-receptor c-met in the thyroid gland.  Experimental and Clinical Endocrinology & Diabetes. 1998;  106 310-318
  • 58 Eccles N, Ivan M, Wynford-Thomas D. Mitogenic stimulation of normal and oncogene-transformed human thyroid epithelial cells by hepatocyte growth factor.  Molecular and Cellular Endocrinology. 1996;  117(2) 247-251
  • 59 Schulte K, Kostarz L, Goretzki P, Röher H. Hepatocyte growth factor (HGF) is not mitogenic for human thyroid cells in primary culture.  Journal of Endocrinological Investigation. 1996;  19(6) 25
  • 60 Auguste L, Masood S, Westerband A. Oncogene expression in follicular neoplasms of the thyroid.  American Journal of Surgery. 1992;  164 592
  • 61 Simon D, Goretzki P, Röher H. The significance of c-neu and p53 in endocrine tumors.  Langenbecks Archives of Surgery. 1993;  2 69-75
  • 62 Lemoine N R, Mayall E S, Wyllie F S. et al . Activated ras oncogenes in human thyroid cancers.  Cancer Research. 1988;  48(16) 4459-4463
  • 63 Lemoine N R, Mayall E S, Wyllie F S. et al . High frequency of ras oncogene activation in all stages of human thyroid tumorigenesis.  Oncogene. 1989;  4(2) 159-164
  • 64 Wright P A, Williams E D, Lemoine N R, Wynford-Thomas D. Radiation-associated and ”spontaneous” human thyroid carcinomas show a different pattern of ras oncogene mutation.  Oncogene. 1991;  6(3) 471-473
  • 65 Burns J S, Blaydes J P, Wright P A. et al . Stepwise transformation of primary thyroid epithelial cells by a mutant Ha-ras oncogene: an in vitro model of tumor progression.  Mol Carcinog. 1992;  6(2) 129-139
  • 66 Burns J, Barton C, Wynford-Thomas D, Lemoine N. In vitro transformation of epithelial cells by ras oncogenes.  Epithelial Cell Biol. 1993;  2(1) 26-43
  • 67 Bos J L. ras oncogenes in human cancer: a review.   , [published erratum appears in Cancer Res 1990 Feb 15;50(4):1352]. Cancer Res. 1989;  49(17) 4682-4689
  • 68 Karga H, Lee J K, Vickery A L. et al . Ras oncogene mutations in benign and malignant thyroid neoplasms.  J Clin Endocrinol Metab. 1991;  73(4) 832-836
  • 69 Fagin J A, Matsuo K, Karmakar A. et al . High prevalence of mutations of the p53 gene in poorly differentiated human thyroid carcinomas.  Journal of Clinical Investigation. 1993;  91(1) 179-184
  • 70 Wright P A, Lemoine N R, Goretzki P E. et al . Mutation of the p53 gene in a differentiated human thyroid carcinoma cell line, but not in primary thyroid tumours.  Oncogene. 1991;  6(9) 1693-1697
  • 71 Simon D, Goretzki P E, Gorelev V. et al . Significance of P53 in human thyroid tumors.  World Journal of Surgery. 1994;  18(4) 535-541
  • 72 Wyllie F S, Lemoine N R, Barton C M. et al . Direct growth stimulation of normal human epithelial cells by mutant p53.  Molecular Carcinogenesis. 1993;  7(2) 83-88
  • 73 Blaydes J P, Schlumberger M, Wynford-Thomas D, Wyllie F S. Interaction between p53 and TGF beta 1 in control of epithelial cell proliferation.  Oncogene. 1995;  10(2) 307-317
  • 74 Zou M, Shi Y, Farid N. p53 mutations in all stages of thyroid carcinomas.  Journal of Clinical Endocrinology and Metabolism. 1993;  77 1054-1058
  • 75 Gamble S C, Cook M C, Riches A C. et al . p53 mutations in tumors derived from irradiated human thyroid epithelial cells.  Mutat Res. 1999;  425(2) 231-238
  • 76 Shackelford R E, Kaufmann W K, Paules R S. Cell Cycle Control, Checkpoint Mechanisms, and Genotoxic Stress.  Environ Health Perspect. 1999;  107 Suppl 1 5-24
  • 77 Eggo M C, Bachrach L K, Burrow G N. Interaction of TSH, insulin and insulin-like growth factors in regulating thyroid growth and function.  Growth Factors. 1990;  2(2-3) 99-109
  • 78 Westermark K, Karlsson F A, Westermark B. Thyrotropin modulates EGF receptor function in porcine thyroid follicle cells.  Mol Cell Endocrinol. 1985;  40(1) 17-23
  • 79 Westermark K, Lundqvist M, Wallin G. et al . EGF-receptors in human normal and pathological thyroid tissue.  Histopathology. 1996;  28(3) 221-227
  • 80 Williams D W, Williams E D, Wynford-Thomas D. Evidence for autocrine production of IGF-1 in human thyroid adenomas.  Molecular and Cellular Endocrinology. 1989;  61(1) 139-143
  • 81 Bidey S P, Hill D J, Eggo M C. Growth factors and goitrogenesis.  J Endocrinol. 1999;  160(3) 321-332
  • 82 Gartner R. Growth factors in thyroid cells.  Curr Top Pathol. 1997;  91 65-81
  • 83 Thompson S D, Franklyn J A, Watkinson J C. et al . Fibroblast growth factors 1 and 2 and fibroblast growth factor receptor 1 are elevated in thyroid hyperplasia.  J Clin Endocrinol Metab. 1998;  83(4) 1336-1341
  • 84 Schulte K M, Niederacher D, An H X. et al . INT-2 gene amplification in differentiated human thyroid cancer.  Exp Clin Endocrinol Diabetes. 1996;  104(Suppl 4) 101-104
  • 85 Asmis L M, Kaempf J, Von Gruenigen C. et al . Acquired and naturally occurring resistance of thyroid follicular cells to the growth inhibitory action of transforming growth factor-beta 1 (TGF-beta 1).  Journal of Endocrinology. 1996;  149(3) 485-496
  • 86 Lazzereschi D, Ranieri A, Mincione G. et al . Human malignant thyroid tumors displayed reduced levels of transforming growth factor beta receptor type II messenger RNA and protein.  Cancer Res. 1997;  57(10) 2071-2076
  • 87 Matoba H, Sugano S, Yamaguchi N, Miyachi Y. Expression of transforming growth factor-beta1 and transforming growth factor-beta Type-II receptor mRNA in papillary thyroid carcinoma [In Process Citation].  Horm Metab Res. 1998;  30(10) 624-628
  • 88 Lazzereschi D, Palmirotta R, Ranieri A. et al . Microsatellite instability in thyroid tumours and tumour-like lesions.  Br J Cancer. 1999;  79(2) 340-345
  • 89 Jones C J, Shaw J J, Wyllie F S. et al . High frequency deletion of the tumour suppressor gene P16INK4a (MTS1) in human thyroid cancer cell lines.  Molecular and Cellular Endocrinology. 1996;  116(1) 115-119
  • 90 Goretzki P E, Gorelov V, Dotzenrath C. et al . A frequent mutation/polymorphism in tumor suppressor gene INK4B (MTS-2) in papillary and medullary thyroid cancer.  Surgery. 1996;  120(6) 1081-1088
  • 91 Schulte K-M, Staudt S, Niederacher D. et al . Rare loss of heterozygozity of the multiple tumor suppressor genes MTS 1 and MTS 2 in differentiated human thyroid cancer.  Hormone and Metabolic Research. 1998;  30 549-554
  • 92 Nord B, Larsson C, Wong F K. et al . Sporadic follicular thyroid tumors show loss of a 200-kb region in 11q13 without evidence for mutations in the MEN1 gene.  Genes Chromosomes Cancer. 1999;  26(1) 35-39
  • 93 Russo D, Arturi F, Pontecorvi A, Filetti S. Genetic analysis in fine-needle aspiration of the thyroid: a new tool for the clinic.  Trends in Endocrinology and Metabolism. 1999;  10 280-285
  • 94 Winzer R, Schmutzler C, Jakobs T C. et al . Reverse transcriptase-polymerase chain reaction analysis of thyrocyte-relevant genes in fine-needle aspiration biopsies of the human thyroid.  Thyroid. 1998;  8(11) 981-987
  • 95 Sciacchitano S, Paliotta D S, Nardi F. et al . PCR amplification and analysis of ras oncogenes from thyroid cytologic smears.  Diagn Mol Pathol. 1994;  3(2) 114-121
  • 96 Smorodinsky N, Weiss M, Hartmann M L. et al . Detection of a secreted MUC1/SEC protein by MUC1 isoform specific monoclonal antibodies.  Biochem Biophys Res Commun. 1996;  228(1) 115-121
  • 97 Weiss M, Baruch A, Keydar I, Wreschner D H. Preoperative diagnosis of thyroid papillary carcinoma by reverse transcriptase polymerase chain reaction of the MUC1 gene.  Int J Cancer. 1996;  66(1) 55-59
  • 98 Takano T, Miyauchi A, Yokozawa T. et al . Accurate and objective preoperative diagnosis of thyroid papillary carcinomas by reverse transcription-PCR detection of oncofetal fibronectin messenger RNA in fine-needle aspiration biopsies.  Cancer Res. 1998;  58(21) 4913-4917
  • 99 Takano T, Matsuzuka F, Miyauchi A. et al . Restricted expression of oncofetal fibronectin mRNA in thyroid papillary and anaplastic carcinoma: an in situ hybridization study.  Br J Cancer. 1998;  78(2) 221-224
  • 100 Arturi F, Russo D, Giuffrida D. et al . Early diagnosis by genetic analysis of differentiated thyroid cancer metastases in small lymph nodes.  J Clin Endocrinol Metab. 1997;  82(5) 1638-1641

Dr. med. Klaus-Martin Schulte

Klinik für Allgemeine Chirurgie und Unfallchirurgie, Heinrich-Heine-Universität

Moorenstr. 5

40225 Düsseldorf

Fax: 0211-8117359

Email: SchulteKM@med.uni-duesseldorf.de

    >