Plant Biol (Stuttg) 2001; 3(1): 24-31
DOI: 10.1055/s-2001-11745
Original Paper
Georg Thieme Verlag Stuttgart ·New York

Influence of Chilling Stress on the Intercellular Distribution of Assimilatory Sulfate Reduction and Thiols in Zea mays

S. Kopriva 1,2 , S. Jones 1,3 , A. Koprivova 1,4 , M. Suter 1 , P. von Ballmoos 1 , K. Brander 1,5 , J. Flückiger 1 , C. Brunold 1
  • 1 Institute of Plant Physiology, University of Berne, Berne, Switzerland
  • 2 Present address: Professur für Baumphysiologie, Universität Freiburg, Freiburg, Germany
  • 3 Present address: Institut für Umwelt und Landwirtschaft, Liebefeld, Switzerland
  • 4 Present address: Lehrstuhl für Pflanzenbiotechnologie, Universität Freiburg, Freiburg, Germany
  • 5 Present address: Integra Biosciences, Wallisellen, Switzerland
Further Information

Publication History

July 28, 2000

October 24, 2000

Publication Date:
31 December 2001 (online)

Abstract

The effect of chilling on the intercellular distribution of mRNAs for enzymes of assimilatory sulfate reduction, the activity of adenosine 5′-phosphosulfate reductase (APR), and the level of glutathione was analysed in leaves and roots of maize (Zea mays L). At 25 °C the mRNAs for APR, ATP sulfurylase, and sulfite reductase accumulated in bundle-sheath only, whereas the mRNA for O-acetylserine sulfhydrylase was also detected in mesophyll cells. Glutathione was predominantly detected in mesophyll cells; however, oxidized glutathione was equally distributed between the two cell types. Chilling at 12 °C induced oxidative stress which resulted in increased concentrations of oxidized glutathione in both cell types and a prominent increase of APR mRNA and activity in bundle-sheath cells. After chilling, mRNAs for APR and sulfite reductase, as well as low APR activity, were detected in mesophyll cells. In roots, APR mRNA and activity were at higher levels in root tips than in the mature root and were greatly increased after chilling. These results demonstrate that chilling stress affected the levels and the intercellular distribution of mRNAs for enzymes of sulfate assimilation.

Abbreviations

APR: adenosine 5′-phosphosulfate reductase

ATPS: adenosine triphosphate sulfurylase

BSC: bundle sheath cells

GSH: glutathione

GSSG: glutathione oxidized

MC: mesophyll cells

NR: nitrate reductase

OAS-TL: O-acetylserine sulfhydrylase

ROS: reactive oxygen species

Rubisco: ribulose bisphosphate carboxylase

SiR: sulfite reductase

References

  • 01 Asada,  K.. (1994) In Causes of photooxidative stress and amelioration of defense systems. Foyer, C. H., Mullineaux, P. M., eds. Boca Raton; CRC Press pp. 77-104
  • 02 Bick,  J. A.,, Aslund,  F.,, Chen,  Y.,, and Leustek,  T.. (1998);  Glutaredoxin function for the carboxyl-terminal domain of the plant-type 5′-adenylylsulfate reductase.  Proc. Natl. Acad. Sci. USA. 95 8404-8409
  • 03 Boese,  S. R.,, Wolfe,  D. W.,, and Melkonian,  J. J.. (1997);  Elevated CO2 mitigates chilling-induced water stress and photosynthetic reduction during chilling.  Plant Cell Environ.. 20 625-632
  • 04 Bowler,  C.,, Montagu,  M.,, and Inzé,  D.. (1992);  Superoxide dismutase and stress tolerance.  Annu. Rev. Plant Physiol. Plant Mol. Biol.. 43 83-116
  • 05 Bradford,  M. M.. (1976);  A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye-binding.  Anal. Biochem.. 72 248-254
  • 06 Brander,  K. A.,, Owttrim,  G. W.,, and Brunold,  C.. (1995);  Isolation of a cDNA (EMBL X85803) encoding a putative chloroplastic isoform of cysteine synthase from maize (PGR95-031).  Plant Physiol.. 108 1748
  • 07 Brunner,  M.,, Kocsy,  G.,, Rüegsegger,  A.,, Schmutz,  D.,, and Brunold,  C.. (1995);  Effect of chilling on assimilatory sulfate reduction and glutathione synthesis in maize.  J. Plant Physiol.. 146 743-747
  • 08 Brunold,  C.. (1990) Reduction of sulfate to sulfide. Sulfur nutrition and sulfur assimilation in higher plants. Rennenberg, H., Brunold, C., De Kok, L. J., Stulen, I., eds. The Hague; SPB Academic Publishing pp. 13-31
  • 09 Brunold,  C.. (1993) Regulatory interactions between sulfate and nitrate assimilation. Sulfur nutrition and sulfur assimilation in higher plants. De Kok, L. J. et al., eds. The Hague; SPB Academic Publishing pp. 61-75
  • 10 Brunold,  C., and Schmidt,  A.. (1976);  Regulation of adenosine 5′-phosphosulfate sulfotransferase activity by H2S in Lemna minor L.  Planta. 133 85-88
  • 11 Brunold,  C., and Suter,  M.. (1989);  Localization of enzymes of assimilatory sulfate reduction in pea roots.  Planta. 179 228-234
  • 12 Brunold,  C., and Suter,  M.. (1990) Adenosine 5′-phosphosulfate sulfotransferase. Methods in Plant Biochemistry, Vol. 3. Lea, P., ed. London; Academic Press pp. 339-343
  • 13 Buchanan,  B. B., and Schürmann,  P.. (1973);  Regulation of ribulose 1,5-diphosphate carboxylase in the photosynthetic assimilation of carbon dioxide.  J. Biol. Chem.. 248 4956-4964
  • 14 Burgener,  M.,, Suter,  M.,, Jones,  S.,, and Brunold,  C.. (1998);  Cyst(e)ine is the transport metabolite of assimilated sulfur from bundle-sheath to mesophyll cells in maize leaves.  Plant Physiol.. 116 1315-1322
  • 15 Burnell,  J. N.. (1984);  Sulfate assimilation in C4 plants.  Plant Physiol.. 75 873-875
  • 16 Doulis,  A. G.,, Debian,  N.,, Kingston-Smith,  A., and Foyer,  C. H.. (1997);  Differential localization of antioxidants in maize leaves.  Plant Physiol.. 114 1031-1037
  • 17 Farago,  S., and Brunold,  C.. (1990);  Regulation of assimilatory sulfate reduction by herbicide safeners in Zea mays L.  Plant Physiol.. 94 1808-1812
  • 18 Flemming,  A., Mandel,  T.,, Roth,  I.,, and Kuhlemeier,  C.. (1993);  The patterns of gene expression in the tomato shoot apical meristem.  Plant Cell. 5 297-309
  • 19 Foyer,  C. H., and Halliwell,  B.. (1976);  The presence of glutathione and glutathione reductase in chloroplasts, a proposed role in ascorbic acid metabolism.  Planta. 133 21-25
  • 20 Foyer,  C. H.,, Descourvières,  P.,, and Kunert,  K. J.. (1994 a);  Protection against oxygen radicals, an important defence mechanism studied in transgenic plants.  Plant Cell Environ.. 17 507-523
  • 21 Foyer,  C. H.,, Lelandais,  M.,, and Kunert,  K. J.. (1994 b);  Photooxidative stress in plants.  Physiol. Plant.. 92 696-717
  • 22 Gerwick,  B. C.,, Ku,  S. B.,, and Black,  C. C.. (1980);  Initiation of sulfate activation: a variation in C4 photosynthesis plants.  Science. 209 513-515
  • 23 Ghisi,  R.,, Anaclerio,  F.,, and Passera,  C.. (1986);  Effects of nitrogen deprivation on the ATP-sulphurylase and O-acetylserine sulphhydrylase activites of mesophyll protoplasts and bundle sheath strands of maize leaves.  Biol. Plant.. 28 144-119
  • 24 Guy,  C. I.,, Carter,  J. V.,, Yelenosky,  G.,, and Guy,  C. T.. (1984);  Changes in glutathione content during cold acclimation in Cornus sericea and Citrus sinensis. .  Cryobiology. 21 443-453
  • 25 Hatch,  M. D.. (1979);  Regulation of C4 photosynthesis, factors affecting cold-mediated inactivation and reactivation of pyruvate Pi-dikinase.  Aust. J. Plant Physiol.. 6 607-619
  • 26 Henschel,  G.. (1970) Untersuchungen über die Aufnahme von 15N-markiertem Harnstoff bei Phaseolus vulgaris l. University of Hohenheim, Stuttgart, Germany; PhD thesis
  • 27 Hodgson,  R. A. J., and Raison,  J. K.. (1991);  Superoxide production by thylakoids during chilling and its implication in the susceptibility of plants to chilling-induced photoinhibition.  Planta. 183 220-228
  • 28 Jecklin,  S.. (1997) Effect of oxidative stress on assimilatory sulfate reduction in maize (Zea mays L.) roots. University of Bern; Diploma work
  • 29 Kast,  D.,, Stalder,  M.,, Rüegsegger,  A.,, Galli,  U.,, and Brunold,  C.. (1995);  Effects of NO2 and nitrate on sulfate assimilation in maize.  J. Plant Physiol.. 147 9-14
  • 30 Kocsy,  G.,, Owttrim,  G.,, Brander,  K.,, and Brunold,  C.. (1997);  Effect of chilling on the diurnal rhythm of enzymes involved in protection against oxidative stress in a chilling-tolerant and a chilling-sensitive maize genotype.  Physiol. Plant.. 99 249-254
  • 31 Kopriva,  S.,, Muheim,  R.,, Koprivova,  A.,, Trachsler,  N.,, Catalano,  C.,, Suter,  M.,, and Brunold,  C.. (1999);  Light regulation of assimilatory sulfate reduction in Arabidopsis thaliana. .  Plant J.. 20 37-44
  • 32 Kopriva,  S.,, Suter,  M.,, Weber,  M.,, Schürmann,  P.,, and Brunold,  C.. (2000) Characterization of APS reductase enzyme purified from Arabidopsis thaliana. . Sulfur Nutrition and Sulfur Assimilation in Higher Plants: molecular, biochemical and physiological aspects. Brunold, C., Rennenberg, H., De Kok, L. J., Stulen, I., and Davidian, J. C., eds. Bern; Paul Haupt Verlag pp. 223-224
  • 33 Koprivova,  A.,, Suter,  M.,, Op den Camp,  R.,, Brunold,  C.,, and Kopriva,  S.. (2000);  Regulation of sulfate assimilation by nitrogen in Arabidopsis. .  Plant Physiol.. 122 737-746
  • 34 Krause,  G. H.. (1988);  Photoinhibition of photosynthesis. An evaluation of damaging and protective mechanisms.  Physiol. Plant.. 74 566-574
  • 35 Lappartient,  A. G., and Touraine,  B.. (1996);  Demand-driven control of root ATP sulfurylase activity and SO4 2- uptake in intact canola.  Plant Physiol.. 111 147-157
  • 36 Leegood,  R. C.. (1985);  The intercellular compartmentation of metabolites in leaves of Zea mays L.  Planta. 164 163-171
  • 37 Levitt,  J.. (1962);  A sulphydryl-disulphide hypothesis of frost injury and resistance in plants.  J. Theor. Biol.. 3 355-391
  • 38 Lieberman,  M.,, Craft,  C. C.,, Audia,  W. V.,, and Wilcox,  M. S.. (1958);  Biochemical studies of chilling injury in sweet potatoes.  Plant Physiol.. 5 307-311
  • 39 Lyons,  J. M., and Asmundson,  C. M.. (1965);  Solidification of saturated/unsaturated fatty acid mixtures and its relationship to chilling sensitivity in plants.  J. Am. Oil. Chem. Soc.. 42 1056-1058
  • 40 Lyons,  J. M., and Raison,  J. K.. (1970);  Oxidative activity of mitochondria isolated from plant tissues sensitive and resistant to chilling injury.  Plant Physiol.. 45 386-389
  • 41 Massacci,  A.,, Iannelli,  M. A.,, Pietrini,  F.,, and Loreto,  F.. (1995);  The effect of growth at low temperature on photosynthetic characteristics and mechanisms of photoprotection of maize leaves.  J. Exp. Bot.. 46 119-127
  • 42 May,  M. J.,, Vernoux,  T.,, Leaver,  C.,, van Montagu,  M.,, and Inzé,  D.. (1998);  Glutathione homeostasis in plants: implications for environmental sensing and plant development.  J. Exp. Bot.. 49 649-667
  • 43 Mills,  W. R., and Joy,  K. W.. (1980);  A method for isolation of purified physiologically active chloroplasts, used to study the intracellular distribution of amino acids in pea leaves.  Planta. 148 75-83
  • 44 Moore,  R., and Black,  C. C.. (1979);  Nitrogen assimilation pathways in leaf mesophyll and bundle sheath cells of C4 photosynthesis plants formulated from comparative studies with Digitaria sanguinalis (L.) Scop.  Plant Physiol.. 64 309-313
  • 45 Neyra,  C. A., and Hagemann,  R. H.. (1975);  Nitrate uptake and induction of nitrate reductase in excised corn roots.  Plant Physiol.. 56 692-695
  • 46 Noctor,  G.,, Arisi,  A.-C. M.,, Jouanin,  L.,, Kunert,  K. J.,, Rennenberg,  H.,, and Foyer,  C. H.. (1998);  Glutathione: biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants.  J. Exp. Bot.. 49 623-647
  • 47 Nussbaum,  S.,, Schmutz,  K.,, and Brunold,  C.. (1988);  Regulation of assimilatory sulfate reduction by cadmium in Zea mays L.  Plant Physiol.. 88 1407-1410
  • 48 Passera,  C., and Ghisi,  R.. (1982);  ATP sulphurylase and O-acetylserine sulphhydrylase in isolated mesophyll protoplasts and bundle sheath strands of S-deprived maize leaves.  J. Exp. Bot.. 33 432-438
  • 49 Pastori,  G. M.,, Mullineaux,  P. M.,, and Foyer,  C. H.. (2000);  Post-transcriptional regulation prevents accumulation of glutathione reductase protein and activity in the bundle sheath cells of maize.  Plant Physiol.. 122 667-675
  • 50 Prasad,  T. K.,, Anderson,  M. D.,, Martin,  B. A.,, and Stewart,  C. R.. (1994);  Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide.  Plant Cell. 6 65-74
  • 51 Reinhardt,  D.,, Wittwer,  F.,, Mandel,  T.,, and Kuhlemeier,  C.. (1998);  Localized upregulation of a new expansin gene predicts the site of leaf formation in the tomato meristem.  Plant Cell. 10 1427-1437
  • 52 Rennenberg,  H., and Brunold,  C.. (1994);  Significance of glutathione metabolism in plants under stress.  Progr. Bot.. 55 144-156
  • 53 Rüegsegger,  A., and Brunold,  C.. (1992);  Effect of cadmium on γ-glutamylcysteine synthesis in maize seedlings.  Plant Physiol.. 99 428-433
  • 54 Schmutz,  D., and Brunold,  C.. (1984);  Intercellular localization of assimilatory sulfate reduction in leaves of Zea mays and Triticum aestivum. .  Plant Physiol.. 74 866-870
  • 55 Schmutz,  D., and Brunold,  C.. (1985);  Localization of nitrite and sulfite reductase in bundle sheath and mesophyll cells of maize leaves.  Physiol. Plant.. 64 523-528
  • 56 Schupp,  R., and Rennenberg,  H.. (1988);  Diurnal changes in the glutathione content of spruce needles (Picea abies L.).  Plant Sci.. 57 113-117
  • 57 Suter,  M.,, von Ballmoos,  P.,, Kopriva,  S.,, Op den Camp,  R.,, Schaller,  J.,, Kuhlemeier,  C.,, Schürmann,  P.,, and Brunold,  C.. (2000);  Adenosine 5′-phosphosulfate sulfotransferase and adenosine 5′-phosphosulfate reductase are identical enzymes.  J. Biol. Chem.. 275 930-936
  • 58 Takahashi,  H.,, Yamazaki,  M.,, Sasakura,  N.,, Watanabe,  A.,, Leustek,  T.,, Engler,  J. A.,, Engler,  G.,, Van Montagu,  M.,, and Saito,  K.. (1997);  Regulation of sulfur assimilation in higher plants: a sulfate transporter induced in sulfate-starved roots plays a central role in Arabidopsis thaliana. .  Proc. Natl. Acad. Sci. USA. 94 11102-11107
  • 59 Walker,  M. A., and McKersie,  B. D.. (1993);  Role of the ascorbate-glutathione antioxidant system in chilling resistance of tomato.  J. Plant Physiol.. 141 234-239
  • 60 Westhoff,  P.,, Offermann-Steinhard,  K.,, Höfer,  M.,, Eskins,  K.,, Oswald,  A.,, and Streubel,  M.. (1991);  Differential accumulation of plastid transcripts encoding photosystem II components in the mesophyll and bundle-sheath cells of monocotyledonous NADP-malic enzyme-type C4 plants.  Planta. 184 377-388
  • 61 Wise,  R. R., and Naylor,  A. W.. (1987);  Chilling-enhanced photooxidation.  Plant Physiol.. 83 278-282
  • 62 Wright,  M., and Simon,  E. W.. (1973);  Chilling injury in cucumber leaves.  J. Exp. Bot.. 79 400-411
  • 63 Wyss,  H. R., and Brunold,  C.. (1979);  Regulation of adenosine 5′-phosphosulfate sulfotransferase activity by H2S and cysteine in primary leaves of Phaseolus vulgaris L.  Planta. 147 37-42

S. Kopriva

Institut für Forstbotanik und Baumphysiologie

Am Flughafen 17
79085 Freiburg
Germany

Email: kopriva@uni-freiburg.de

Section Editor: H. Rennenberg

    >