Plant Biol (Stuttg) 2002; 4(1): 121-132
DOI: 10.1055/s-2002-20444
Original Paper
Georg Thieme Verlag Stuttgart ·New York

Bienertia cycloptera Bunge ex Boiss., Chenopodiaceae, another C4 Plant without Kranz Tissues[1]

H. Freitag 1 , W. Stichler 2
  • 1 Morphologie und Systematik der Pflanzen, Universität Kassel, Kassel, Germany
  • 2 GSF Forschungszentrum, Institut für Hydrologie, Neuherberg, Germany
Further Information

Publication History

January 24, 2002

January 30, 2002

Publication Date:
28 February 2002 (online)

Abstract

Following up an earlier study on Borszczowia aralocaspica, a second C4 leaf type without Kranz tissues is described from Bienertia cycloptera Bunge ex Boiss. The species belongs also to tribe Suaedeae and grows in similar temporarily wet saline habitats in southwestern C Asia. Like Borszczowia, the species has the ability to perform C4 photosynthesis in single chlorenchyma cells but the cytological compartmentation differs. Evidence is cited from anatomy (cytoplasmic compartmentation, starch formation), from carbon isotope composition and from indirect sources. It is documented by micrographs and δ13C values (mean - 14.7 ‰). Variations of the δ13C values subsequently found in newly formed leaves of the same greenhouse plants (- 15.5 to - 21.1 ‰) support the hypothesis that Bienertia is a facultative C4/C3 species. The new described bienertioid leaf type differs from the leaves of C3 species in Suaeda by strict separation of the mesophyll into a central aqueous tissue without chloroplasts and a peripheral 1 - 3 layered chlorenchyma with elaborate cytoplasmic compartmentation. Each cell of the latter contains a peripheral cytoplasmic layer with scattered chloroplasts and a large globular cytoplasmic body located in the central vacuole which is densely packed with starch producing chloroplasts, and joined by the nucleus. Comparative studies on different leaves of the same individuals of ordinary C4 species demonstrated a remarkable range of variation, from 1.0 ‰ in Salsola tragus up to 2.5 ‰ in Petrosimonia sibirica. This corresponds well with the variance in data from different individuals and populations. For explaining the larger interspecific variation from about 23 other species of Salsoloideae, the hypothesis is developed that in species or groups of taxa specific leakages of their C4 systems do occur. By three characters unique in tribe Suaedeae and detected during the study, Bienertia is confirmed as well separated from Suaeda and as a monotypic genus.

1 The paper is dedicated to the memory of Vladimir Pyankov, the eminent student of C4 Plant Biology, who tragically died on February 1st of 2002 during a research stay in Munich.
The paper is an extended version of a lecture presented at the 15th International Symposium “Biodiversity and Evolutionary Biology” in Bochum, Germany, 27. 9. 2001.

References

  • 01 Akhani,  H.,, Trimborn,  P.,, and Ziegler,  H.. (1997);  Photosynthetic pathways in Chenopodiaceae from Africa, Asia and Europe with their ecological, phytyogeographical and taxonomical importance.  Pl. Syst. Evol.. 206 187-221
  • 02 Ball,  P. W., and Akeroyd,  J. R.. (1993) Suaeda. . Flora Europaea 1. Tutin, T. G. et al., eds. Cambridge; Cambridge University Press pp. 123-125
  • 03 Boissier,  E.. (1879) Flora orientalis 9. Basel/Genève; H. Georg pp. 945
  • 04 Bridson,  G. D. R., and Smith,  E. R. (eds.). (1991) Botanico-Periodicum Huntianum, Supplementum. Pittsburgh; Hunt Institution for Botanical Documentation
  • 05 Casati,  P.,, Lara,  M. V.,, and Andreo,  C. S.. (2000);  Induction of a C4-like mechanism of CO2 fixation in Egeria densa, a submersed aquatic species.  Pl. Physiol.. 123 1611-1622
  • 06 Czerepanov,  S. K.. (1995) Vascular plants of Russia and adjacent states (the former USSR). Cambridge; Cambridge University Press
  • 07 Drincovich,  M. F.,, Casati,  P.,, Andreo,  C. S.,, Chessin,  S. J.,, Franceschi,  V. R.,, Edwards,  G. E.,, and Ku,  M. S. B.. (1998);  Evolution of C4 photosynthesis in Flaveria species. Isoforms of NADP-malic enzyme.  Pl. Physiol.. 117 733-744
  • 08 Farquhar,  G. D.. (1983);  On the nature of carbon isotope discrimination in C4 species.  Austr. J. Pl. Physiol.. 10 205-226
  • 09 Farquhar,  G. D.,, Ehleringer,  J. R.,, and Hubick,  K. D.. (1989);  Carbon isotope discrimination and photosynthesis.  Annual Rev. Pl. Physiol. Pl. Molec. Biol.. 40 503-537
  • 10 Freitag,  H., and Stichler,  W.. (2000);  A remarkable new leaf type with unusual photosynthetic tissue in a Central Asiatic genus of Chenopodiaceae. .  Pl. Biol.. 2 154-160
  • 11 Freitag,  H., and Stichler,  W.. (2001) Bienertia cycloptera Bunge, ex Boiss., Chenopodiaceae, another C4 plant without Kranz tissues. 15. Intern. Symp. Biodiversität und Evolutionsbiologie Bochum p. 18
  • 12 Gamaley,  Yu. V.,, Glagoleva,  T. A.,, Koltschevsky,  K. G.,, and Chulanovskaya,  M. V.. (1992);  The C4 syndrome types ecology and evolution in connection with phylogeny of the Chenopodiaceae and Poaceae.  Bot. Zhurn. S.S.S.R.. 77 1-12
  • 13 Glagoleva,  T. A.,, Chulanovskaya,  M. V.,, Pakhomova,  M. V.,, Voznesenskaya,  E. V.,, and Gamaley,  Yu. V.. (1992);  Effect of salinity on the structure of the assimilatory organs and 14C labelling patterns in C3 and C4 plants of Ararat plain.  Photosynthetica. 26 363-369
  • 14 Hedge,  I. C.. (1997) Bienertia. . Flora Iranica 172. Rechinger, K. H., ed. Graz; Akademische Druck- und Verlagsanstalt pp. 153-154
  • 15 Hedge,  I. C.,, Akhani,  H.,, Freitag,  H.,, Kothe-Heinrich,  G.,, Podlech,  D.,, Rilke,  S., and Uotila,  P.. (1997) Chenopodiaceae. Flora Iranica 172. Rechinger, K. H., ed. Graz; Akademische Druck- und Verlagsanstalt pp. 3-5
  • 16 Iljin,  M. M.. (1936) Chenopodiaceae. Flora S.S.S.R. 6. Moskva/Leningrad; Akad. Nauk pp. 1-354
  • 17 Kühn,  U.. (1993) Chenopodiaceae. The families and genera of flowering plants. Kubitzki, K., ed. Berlin etc.; Springer pp. 253-281
  • 18 Monson,  R. K.,, Teeri,  J. A.,, Ku,  M. S. B.,, Gurevitch,  J.,, Mets,  L. M.,, and Dudley,  S.. (1988);  Carbon-isotope discrimination by leaves of Flaveria species exhibiting different amounts of C3-and C4-cycle co-function.  Planta. 174 145-156
  • 19 Osmond,  C. B.,, Winter,  K.,, and Ziegler,  H.. (1982);  Functional significance of different pathways of CO2 fixation in photosynthesis.  Encycl. Pl. Physiol. N.S.. 12 B 479-547
  • 20 P'yankov,  V. I.,, Vasil'ev,  A. N.,, Kuz'min,  A. N.,, Demidov,  E. D.,, and Maslov,  A. I.. (1992);  Daily dynamic of physiological processes in succulent halophytic plants with C3 and C4 types of photosynthesis from arid zone of Central Asia.  Soviet Pl. Physiol.. 39 599-605
  • 21 P'yankov,  V. I.,, Ziegler,  H.,, Kuz'min,  A. N.,, and Edwards,  G.. (2001);  Origin and evolution of C4 photosynthesis in the tribe Salsoleae (Chenopodiaceae) based on anatomical and biochemical types in leaves and cotyledons.  Pl. Syst. Evol.. 230 43-74
  • 22 Schenk,  H. J., and Ferren,  W. R.. (2001);  On the sectional nomenclature of Suaeda (Chenopodiaceae).  Taxon. 50 857-873
  • 23 Schulze,  E.-D.,, Ziegler,  H.,, and Stichler,  W.. (1976);  Environmental control of Crassulacean acid metabolism in Welwitschia mirabilis Hook. f. in its range of natural distribution in the Namib desert.  Oecologia. 24 323-334
  • 24 Schulze,  E.-D.,, Ellis,  R.,, Schulze,  W.,, Trimborn,  P.,, and Ziegler,  H.. (1996);  Diversity, metabolic types and δ13C carbon isotope ratios in the grass flora of Namibia in relation to growth form, precipitation and habitat conditions.  Oecologia. 106 352-369
  • 25 Shomer-Ilan,  A. S.,, Nissenbaum,  A.,, and Waisel,  Y.. (1981);  Photosynthetic pathways and the ecological distribution of the Chenopodiaceae in Israel.  Oecologia. 48 244-248
  • 26 Tzvelev,  N. N.. (1993);  Zametki o marevikh (Chenopodiaceae) vostochnoj evropy.  Ukrayins'k. Bot. Zhurn.. 50 78-85
  • 27 Tzvelev,  N. N.. (1996) Bienertia. . Flora Europae Orientalis 9. St. Petersburg; Mir i sem'ya-95 p. 98
  • 28 Ulbrich,  E.. (1934) Chenopodiaceae. Die natürlichen Pflanzenfamilien. 2nd ed., 16 c. Engler, A. and Prantl, K., eds. Leipzig; Engelmann pp. 379-584
  • 29 Ueno,  O.. (2001);  Environmental regulation of C3 and C4 differentiation in the amphibious sedge Eleocharis vivipara. .  Pl. Physiol.. 127 1524-1532
  • 30 Voznesenskaya,  E. V.,, Franceschi,  V.,, Kiirats,  O.,, Freitag,  H.,, and Edwards,  G. E.. (2001);  Kranz anatomy is not essential for terrestrial C4 plant photosynthesis.  Nature. 414 543-546
  • 31 Voznesenskaya,  E. V.,, Artyusheva,  E. G.,, Franceschi,  V. R.,, P'yankov,  V. I.,, Kiirats,  O.,, Kus,  M. S. B.,, and Edwards,  G. E.. (2001);  Salsola arbusculiformis, a C3-C4 intermediate in Salsoleae (Chenopodiaceae).  Ann. Bot. Oxford. 88 337-348
  • 32 Winter,  K.. (1981);  C4 plants of high biomass in arid regions of Asia: occurrence of C4 photosynthesis in Chenopodiaceae and Polygonaceae from the Middle East and USSR.  Oecologia. 48 100-106

1 The paper is dedicated to the memory of Vladimir Pyankov, the eminent student of C4 Plant Biology, who tragically died on February 1st of 2002 during a research stay in Munich.
The paper is an extended version of a lecture presented at the 15th International Symposium “Biodiversity and Evolutionary Biology” in Bochum, Germany, 27. 9. 2001.

2 For discussion of a most questionable second species see p. 129.

3 For linguistic reasons, here we use the term borszczowioid instead of the earlier borszczovoid.

4 The terms austrobassioid and Kranz-suaedoid applied by Carolin et al. (1973) to leaves of Suaeda species are used here with hesitation. A revised terminology that covers more appropriately the diversity of leaves in Suaedeae is under study.

H. Freitag

Morphologie und Systematik der Pflanzen
Universität Kassel

34132 Kassel
Germany

Email: hfreitag@uni-kassel.de

Section Editor: C. B. Osmond

    >