Semin Hear 2002; 23(1): 013-020
DOI: 10.1055/s-2002-24970
Copyright © 2002 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Sound Conditioning Modulates Auditory Sensitivity

Barbara Canlon
  • Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
Further Information

Publication History

Publication Date:
11 April 2002 (online)

ABSTRACT

Preconditioning is an active process found in many neuronal and nonneuronal systems that creates tolerance to subsequent detrimental forms of trauma or stress. Preconditioning is usually induced by low level, nondamaging stimuli that can result in long-term protective effects. Preconditioning has been shown to increase tolerance in many biological systems, including ischemia, light damage in the retina, and noise damage in the cochlea. The preconditioning event that increases tolerance in the inner ear is termed either sound conditioning or toughening. Evidence continues to accumulate demonstrating the importance of reducing the deleterious effects of noise trauma by sound conditioning. Sound conditioning is an active process induced by low level, nondamaging noise exposure that creates long-term protective effects to subsequent detrimental forms of noise trauma. This phenomenon is now shown to occur in a variety of mammals, including gerbils, chinchillas, guinea pigs, rabbits, rats, mice, and of most importance, human subjects. Different sound conditioning paradigms have been proven successful in preventing pathological changes to the auditory system. In the present overview these studies are reviewed and the possible biological mechanisms underlying this phenomenon are discussed.

REFERENCES

  • 1 Miller J D, Watson C S, Covell W P. Deafening effects of noise on the cat.  Acta Otolaryngol . 1963;  176(Suppl) 1-91
  • 2 Canlon B, Borg E, Flock Å. Protection against noise trauma by pre-exposure to a low level acoustic stimulus.  Hear Res . 1988;  34 197-200
  • 3 Ryan A F, Bennett T M, Woolf N K, Axelsson A. Protection from noise-induced hearing loss by prior exposure to a nontraumatic stimulus: role of the middle ear muscles.  Hear Res . 1994;  72 23-28
  • 4 Boettcher F A, Schmiedt R A. Distortion-product otoacoustic emissions in Mongolian gerbils with resistance to noise-induced hearing loss.  J Acoust Soc Am . 1995;  98 3215-3222
  • 5 Dagli S, Canlon B. The effect of repeated daily noise exposure on sound conditioned and unconditioned guinea pigs.  Hear Res . 1997;  104 39-46
  • 6 Kujawa S G, Liberman M C. Conditioning-related protection from acoustic injury: effects of chronic deefferentation and sham surgery.  J Neurophysiol . 1997;  78 3095-3106
  • 7 Canlon B, Borg E, Löfstrand P. Physiological and morphological aspects to low level acoustic stimulation. In: Dancer AL, Henderson D, Salvi RJ, et al. The Effects of Noise on the Auditory System St. Louis, MO: Mosby-Year Book 1992: 489-499
  • 8 Pukkila M, Zhai S, Virkkala J, Pirovola U, Ylikoski J. The ``toughening'' phenomenon in rat's auditory organ.  Acta Otolaryngol . 1997;  529 59-62
  • 9 White D R, Boettcher F A, Miles L R, Gratton M A. Effectiveness of intermittent and continuous acoustic stimulation in preventing noise-induced hearing and hair cell loss.  J Acoust Soc Am . 1998;  103 1566-1572
  • 10 Clark W W, Boettcher F A, Bohne B A. Effect of periodic rest on hearing loss and cochlear damage following exposure to noise.  J Acoust Soc Am . 1987;  82 1253-1264
  • 11 Sinex D G, Clark W W, Bohne B A. Effect of periodic rest on physiological measures of auditory sensitivity following exposure to noise.  J Acoust Soc Am . 1987;  82 1265-1273
  • 12 Campo P, Subramaniam M, Henderson D. The effect of `conditioning' exposures on hearing loss from traumatic exposure.  Hear Res . 1991;  55 195-200
  • 13 Franklin D J, Lonsbury-Martin B L, Stagner B B, Martin G K. Altered susceptibility of 2f1-f2 acoustic-distortion products to the effects of repeated noise exposure in rabbits.  Hear Res . 1991;  53 185-208
  • 14 Boettcher F A, Spongr V P, Salvi R J. Physiological and histological changes associated with the reduction in threshold shift during interrupted noise exposure.  Hear Res . 1992;  62 217-236
  • 15 Subramaniam M, Campo P, Henderson D. The effect of exposure level on the development of progressive resistance to noise.  Hear Res . 1991;  52 181-188
  • 16 Miyakita T, Hellström P A, Frimanson E, Axelsson A. Effect of low level acoustic stimulation on temporary threshold shift in young humans.  Hear Res . 1992;  60 149-155
  • 17 Henselman L W, Henderson D, Subramaniam M, Sallustio V. The effect of `conditioning' exposures on hearing loss from impulse noise.  Hear Res . 1994;  78 1-10
  • 18 Henderson D, Subramaniam M, Papazian M, Spongr V P. The role of middle ear muscles in the development of resistance to noise induced hearing loss.  Hear Res . 1994;  74 22-28
  • 19 McFadden S L, Henderson D, Shen Y H. Low-frequency `conditioning' provides long-term protection from noise-induced threshold shifts in chinchillas.  Hear Res . 1997;  103 142-150
  • 20 Canlon B, Ryan A, Boettcher F A. On the factors required for obtaining protection against noise trauma by prior acoustic experience.  Hear Res . 1999;  127 158-160
  • 21 Fowler T, Canlon B, Dolan D, Miller J. The effects of noise trauma following training exposures in the mouse.  Hear Res . 1995;  88 1-13
  • 22 Yoshida N, Liberman M C. Sound conditioning reduces noise-induced permanent threshold shift in mice.  Hear Res . 2000;  148 213-219
  • 23 Willot J F, Turner J G. Prolonged exposure to an augmented acoustic environment ameliorates age-related auditory changes in C57BL/6J and DBA/2J mice.  Hear Res . 1999;  135 78-88
  • 24 Yoshida N, Kristiansen A, Liberman M C. Heat stress and protection from permanent acoustic injury in mice.  J Neurosci . 1999;  19 10116-10124
  • 25 Avan P, Loth D, Menguy C, Teyssou M. Hypothetical roles of middle ear muscles in the guinea pig.  Hear Res . 1992;  59 59-69
  • 26 Dagli S, Canlon B. Protection against noise trauma by sound conditioning in the guinea pig appears not to be mediated by the middle ear muscles.  Neurosci Lett . 1995;  194 57-60
  • 27 Yamasoba T, Dolan D F, Miller J M. Acquired resistance to acoustic trauma by sound conditioning is primarily mediated by changes restricted to the cochlea, not by systemic responses.  Hear Res . 1999;  127 31-40
  • 28 Rajan R. Effect of electrical stimulation of the crossed olivocochlear bundle on temporary threshold shifts in auditory sensitivity. I. Dependence on electrical stimulation parameters.  J Neurophysiol . 1988;  60 549-568
  • 29 Cody A R, Johnstone B M. Temporary threshold shift modified by binaural acoustic stimulation.  Hear Res . 1984;  6 199-205
  • 30 Reiter E R, Liberman M C. Efferent-mediated protection from acoustic overexposure: relation to `slow effects' of olivocochlear stimulation.  J Neurophysiol . 1995;  73 506-514
  • 31 Yamasoba T, Dolan D F. The medial cochlear efferent system does not appear to contribute to the development of acquired resistance to acoustic trauma.  Hear Res . 1999;  129 143-151
  • 32 Zheng X Y, Henderson D, McFadden S L, Hu B H. The role of the cochlear efferent system in acquired resistance to noise-induced hearing loss.  Hear Res . 1997;  104 191-203
  • 33 Yamane H, Nakai Y, Takayama M. Appearance of free radicals in the guinea pig inner ear after noise-induced acoustic trauma.  Eur Arch Otorhinolaryngol . 1995;  252 504-508
  • 34 Ohlemiller K K, McFadden S L, Ding D L. Targeted deletion of the cytosolic Cu/Zn-superoxide dismutase gene (Sod1) increases susceptibility to noise-induced hearing loss.  Audiol Neurootol . 1999;  4 237-246
  • 35 Yamasoba T, Harris C, Shoji F. Influence of intense sound exposure on glutathione synthesis in the cochlea.  Brain Res . 1998;  804 72-78
  • 36 Hu B H, Zheng X Y, McFadden S L, Kopke R D, Henderson D. R-phenylisopropyladenosine attenuates noise-induced hearing loss in the chinchilla.  Hear Res . 1997;  113 198-206
  • 37 Seidman M D, Shivapuja B G, Quirk W S. The protective effects of allopurinol and superoxide dismutase on noise-induced cochlear damage.  Otolaryngol Head Neck Surg . 1993;  109 1052-1056
  • 38 Jacono A A, Hu B, Kopke R. Changes in cochlear antioxidant enzyme activity after sound conditioning and noise exposure in the chinchilla.  Hear Res . 1998;  117 31-38
  • 39 Lautermann J, Crann S A, McLaren J, Schacht J. Glutathione-dependent antioxidant systems in the mammalian inner ear: effects of aging, ototoxicity, and noise.  Hear Res . 1997;  114 75-82
  • 40 Ernfors P, Canlon B. Aminoglycoside excitement silences hearing.  Nature Medicine . 1996;  2 1313-1314
  • 41 Canlon B, Fransson A. Morphological and functional preservation of the outer hair cells from noise trauma by sound conditioning.  Hear Res . 1995;  84 112-124
    >