References
For recent reviews on parallel solution-phase synthesis using polymer reagents and
scavengers, see:
<A NAME="RS07701ST-1A">1a</A>
Thomson MA.
Ellman JA.
Chem. Rev.
1996,
96:
555
<A NAME="RS07701ST-1B">1b</A>
Kaldor SW.
Siegel MW.
Curr. Opin. Chem. Biol.
1997,
1:
101
<A NAME="RS07701ST-1C">1c</A>
Coffen DL.
Tetrahedron
1998,
54:
4085
<A NAME="RS07701ST-1D">1d</A>
Booth RJ.
Hodges JC.
J. Am. Chem. Soc.
1997,
119:
4882
<A NAME="RS07701ST-1E">1e</A>
Flynn DL.
Crich JZ.
Devraj RV.
Hockerman SL.
Parlow JJ.
South MS.
Woodard SS.
J. Am. Chem. Soc.
1997,
119:
4874
<A NAME="RS07701ST-1F">1f</A>
Parlow JJ.
Mischke DA.
Woodard SS.
J. Org. Chem.
1997,
62:
5908
<A NAME="RS07701ST-1G">1g</A>
Shuker AJ.
Siegel MG.
Matthews DP.
Wiegel LO.
Tetrahedron Lett.
1997,
38:
6149
<A NAME="RS07701ST-1H">1h</A>
Parlow JJ.
Devraj RV.
South MS.
Curr. Opin. Chem. Biol.
1999,
3:
320
<A NAME="RS07701ST-1I">1i</A>
Flynn DL.
Med. Res. Rev.
1999,
19:
408
<A NAME="RS07701ST-1J">1j</A>
Brummer O.
Clapham B.
Janda KD.
Curr. Opion. Drug Discovery Dev.
2000,
3:
462
<A NAME="RS07701ST-1K">1k</A>
Shuttleworth SJ.
Allin SM.
Wilson RD.
Nasturica D.
Synthesis
2000,
1035
<A NAME="RS07701ST-1L">1l</A>
Bhalay G.
Dunstan A.
Glen A.
Synlett
2000,
1846
<A NAME="RS07701ST-1M">1m</A>
de Miguel YR.
J. Chem. Soc., Perkin Trans 1
2000,
4213
<A NAME="RS07701ST-1N">1n</A>
Bhattacharyya S.
Comb. Chem. High Throughput Screening
2000,
3:
65
<A NAME="RS07701ST-1O">1o</A>
Ley SV.
Baxendale IR.
Bream RN.
Jackson PS.
Leach AG.
Longbottom DA.
Nesi M.
Scott JS.
Storer RI.
Taylor SJ.
J. Chem. Soc., Perkin Trans 1
2000,
3815
<A NAME="RS07701ST-1P">1p</A>
Kirschning A.
Monenschein H.
Wittenberg R.
Angew. Chem. Int. Ed.
2001,
40:
650
<A NAME="RS07701ST-2">2</A>
Yun, Y. K.; Porco, Jr., J. A. Synthesis of Substituted Benzimidazoles using Parallel
Hydrogenation, Argonaut Technologies, Application Note APN 025.
For recent publications on the solid-phase synthesis of benzimidazoles, see:
<A NAME="RS07701ST-3A">3a</A>
Scarborough RM.
Huang W.
Tetrahedron Lett.
1999,
40:
2665
<A NAME="RS07701ST-3B">3b</A>
Pan P.
Sun C.
Bioorg. Med. Chem. Lett.
1999,
9:
1537
<A NAME="RS07701ST-3C">3c</A>
Tumelty D.
Schearz M.
Needels MC.
Tetrahedron Lett.
1998,
39:
7467
<A NAME="RS07701ST-3D">3d</A>
Mayer JP.
Lewis GS.
McGee C.
Bankaitis-Davis D.
Tetrahedron Lett.
1998,
39:
6655
<A NAME="RS07701ST-3E">3e</A>
Wei GP.
Phillips GB.
Tetrahedron Lett.
1998,
39:
179
<A NAME="RS07701ST-3F">3f</A>
Lee J.
Gauthier D.
Rivero RA.
Tetrahedron Lett.
1998,
39:
201
<A NAME="RS07701ST-3G">3g</A>
Phillips GB.
Wei GP.
Tetrahedron Lett.
1996,
37:
4887
<A NAME="RS07701ST-4A">4a</A>
White AW.
Almassy R.
Calvert AH.
Curtin NJ.
Griffin RJ.
Hostomsky Z.
Maegley K.
Newell DR.
Srinivasan S.
Golding BT.
J. Med. Chem.
2000,
43:
4084
<A NAME="RS07701ST-4B">4b</A>
Chua M.
Shi D.
Wrigley S.
Bradshaw TD.
Hutchinson I.
Shaw PN.
Barrett D.
Stanley LA.
Stevens MFG.
J. Med. Chem.
1999,
42:
381
<A NAME="RS07701ST-4C">4c</A>
Palmer B.
Smaill J.
Boyd M.
Boschelli D.
J. Med. Chem.
1998,
41:
5457
<A NAME="RS07701ST-4D">4d</A>
Orjales A.
Mosquera R.
Labeaga L.
Rodes R.
J. Med. Chem.
1997,
40:
586
<A NAME="RS07701ST-4E">4e</A>
Terauchi H.
Tanitame A.
Nakamura K.
Seto Y.
Nishikawa Y.
J. Med. Chem.
1997,
40:
313
<A NAME="RS07701ST-4F">4f</A>
Zarrinmayeh H.
Zimmerman DM.
Cantrell BE.
Schober DA.
Bruns RF.
Gackenheimer SL.
Ornstein PL.
Hipskind PA.
Britton TC.
Gehlert DR.
Bioorg. Med. Chem. Lett.
1999,
9:
647
<A NAME="RS07701ST-5A">5a</A>
Zhang L.
Wats WM.
Costello TD.
Ma P.
Ensinger CL.
Rodgers JM.
Jacobson IC.
Rajagopalan P.
Tetrahedron Lett.
1995,
36:
8387
<A NAME="RS07701ST-5B">5b</A>
Lee J.
Murray WV.
Rivero RA.
J. Org. Chem.
1997,
62:
3874
<A NAME="RS07701ST-5C">5c</A>
Mazurov A.
Tetrahedron Lett.
2000,
41:
7
<A NAME="RS07701ST-5D">5d</A>
Arumugam V.
Routledge A.
Abell C.
Balasubramanian S.
Tetrahedron Lett.
1997,
38:
6473
<A NAME="RS07701ST-5E">5e</A>
Kiselyov A.
Armstrong RW.
Tetrahedron Lett.
1997,
38:
6163
<A NAME="RS07701ST-5F">5f</A>
Rylander P.
Hydrogenation Methods
Academic Press;
San Diego CA:
1985.
p.104-116
<A NAME="RS07701ST-6A">6a</A>
Veale CA.
Steelman GB.
Chow MM.
J. Org. Chem.
1993,
58:
4490
<A NAME="RS07701ST-6B">6b</A>
Batti R.
Gouverneur V.
Mioskowski C.
Synthesis
1999,
927
<A NAME="RS07701ST-7A">7a</A>
Eynde JJV.
Delfosse F.
Lor P.
Haverbeke YV.
Tetrahedron
1995,
51:
5813
<A NAME="RS07701ST-7B">7b</A>
Thomas JB.
Fall MJ.
Cooper JB.
Burgess JP.
Carroll FI.
Tetrahedron Lett.
1997,
38:
5099
<A NAME="RS07701ST-7C">7c</A>
Moore AG.
Schow SR.
Lum RT.
Nelson MG.
Melville CR.
Synthesis
1999,
1123
Representative procedure for amide coupling using PS-carbodiimide and PS-Trisamine:
<A NAME="RS07701ST-8A">8a</A>
Method A: PS-Carbodiimide resin (2.0 equiv) was added to a dry reaction vessel. The
acid (1.5 equiv) in CH2Cl2 (with 10% DMF added if required) was added to the dry resin and the mixture stirred
at room temperature. After 5 min., amine (1.0 equiv) in CH2Cl2 was added and the reaction stirred at room temperature for 12 h to afford the amide
product. Typical reaction solvent volumes are 10 mL/g resin.
<A NAME="RS07701ST-8B">8b</A>
Method B: Amine (1.0 equiv) and acid (1.5 equiv) in CH2Cl2 (with 10% DMF added if necessary) were added to a dry reaction vessel and the mixture
stirred for 10 min prior to addition of PS-Carbodiimide resin (2 equiv) with a reaction
solvent volume of 10 mL/g resin. The reaction was then stirred overnight.
<A NAME="RS07701ST-8C">8c</A>
Method C: PS-Carbodiimide (2.0 equiv), acid (1.5 equiv) and HOAt (1.7 equiv) were
dissolved in CH2Cl2 and added to a dry reaction vessel and stirred for 5-10 min prior to addition of
amine (1.0 equiv). The reaction was stirred at room temperature overnight. After the
reaction, the HOAt was scavenged using PS-Trisamine resin (5 equiv) for 2 hours at
room temperature prior to filtration.
<A NAME="RS07701ST-8D">8d</A>
General Procedure for Reaction Work-up: The reaction mixture was filtered and the
amide product was collected in the filtrate. The resin was further washed an additional
two times with the reaction solvent (CH2Cl2 or CH2Cl2-DMF as needed for solubility). A sample from the combined fractions was generally
analyzed by GC before concentration to evaluate product purity and presence (if any)
of unreacted amine. Concentration afforded the amide product.
<A NAME="RS07701ST-9A">9a</A>
Weidner JJ.
Parlow JJ.
Flynn DL.
Tetrahedron Lett.
1999,
40:
239
<A NAME="RS07701ST-9B">9b</A>
Nicewonger RB.
Ditto L.
Varady L.
Tetrahedron Lett.
2000,
41:
2323
<A NAME="RS07701ST-10A">10a</A>
Nestor JJ.
Horner BL.
Ho TL.
Jones GH.
McRae GI.
Vickery BH.
J. Med. Chem.
1984,
27:
320
<A NAME="RS07701ST-10B">10b</A>
Ogatta M.
Yoshimura T.
Fijji H.
Ito Y.
Katsuki T.
Synlett
1993,
728
<A NAME="RS07701ST-10C">10c</A>
Clarborne CF.
Liverton NJ.
Tetrahedron Lett.
1998,
39:
8939
<A NAME="RS07701ST-11">11</A>
Representative spectroscopic data for compounds 2-4, 6, and 7.2d: 1H NMR (CDCl3, 300 MHz): δ 9.96 (bs, 1 H, NH), 8.50 (dd, J = 8.1 Hz, 1.5 Hz, 1 H, CH), 8.43 (dd, J = 4.8 Hz, 1.8 Hz, 1 H, CH), 7.48 (d, J = 9.3 Hz, 2 H, CH), 6.93 (d, J = 9.0 Hz, 2 H, CH), 6.77 (dd, J = 8.7 Hz, 4.8 Hz, 1 H, CH), 3.82 (s, 3 H, CH3); 13C NMR (CDCl3, 75 MHz): δ 157.12, 155.45, 150.81, 135.46, 130.61, 128.30, 124.78, 114.26, 113.34,
55.48 ppm.
3d: 1H NMR (d6-DMSO, 300 MHz): δ 7.95 (bs, 1 H, NH), 7.49 (d, J = 9.0 Hz, 2 H, CH), 7.36 (dd, J = 4.8 Hz, 1.2 Hz, 1 H, CH), 6.90 (dd, J = 7.5 Hz, 1.2 Hz, 1 H, CH), 6.86 (d, J = 9.0 Hz, 1 H, CH), 6.58 (dd, J = 7.8 Hz, 5.4 Hz, 1 H, CH), 5.60 (bs, 2 H, NH2), 3.71 (s, 3 H, CH3); 13C NMR (d6-DMSO, 75 MHz): δ 154.46, 144.13, 134.11, 132.20, 131.94, 121.61, 119.56, 114.89,
114.11, 55.34 ppm.
4d: 1H NMR (CDCl3, 300 MHz): δ 8.44 (d, J = 4.8 Hz, 1 H, CH), 8.25 (s, 1 H, CH), 8.13 (d, J = 7.8 Hz, 1 H, CH), 7.60 (d, J = 8.7 Hz, 2 H, CH), 7.30 (dd, J = 8.1 Hz, 4.8 Hz, 1 H, CH), 7.08 (d, 2 H, CH), 3.85 (s, 3 H, CH3); 13C NMR (CDCl3, 75 MHz): δ 159.30, 147.12, 144.90, 143.29, 135.71, 128.23, 128.01, 125.37, 118.71,
115.01, 55.61 ppm.
6i: 1H NMR (CDCl3, 300 MHz): δ 9.17 (s, 1 H, CH), 7.98 (d, J = 8.4 Hz, 2H, CH), 7.71 (dd, J = 8.7, 2.1 Hz, 2 H, CH), 7.55 (s, 1 H, CH), 7.43 (d, J = 8.7 Hz, 1 H, CH), 6.86 (d, J = 8.7 Hz, 1 H, CH), 5.41 (s, 1 H, CH), 3.23 (t, J = 6.9 Hz, 2 H, CH2), 1.61 (tt, J = 7.5, 7.5 Hz, 2 H, CH2), 1.43 (tq, J = 8.1, 7.2 Hz, 2 H, CH2), 0.91 (t, J = 7.5 Hz, 3 H, CH3) ppm.
7i: 1H NMR (CDCl3, 300 MHz): δ 7.97 (s, 1 H, CH), 7.82 (d, J = 8.4 Hz, 1 H, CH), 7.72 (d, J = 8.4 Hz, 2 H, CH), 7.67 (d, J = 8.7 Hz, 2 H, CH), 7.54 (d, J = 8.1 Hz, 1 H, CH), 4.27 (t, J = 7.2 Hz, 2 H, CH2), 1.55 (tt, J = 7.5, 7.5 Hz, 2 H, CH2), 1.05 (tq, J = 7.8, 7.2 Hz, 2 H, CH2), 0.66 (t, J = 7.5 Hz, 3 H, CH3); 13C NMR (CDCl3, 75 MHz): δ 154.27, 141.92, 137.99, 131.89, 131.22, 129.13, 123.83, 119.17, 116.62,
44.18, 31.14, 19.14, 13.23 ppm.
<A NAME="RS07701ST-12">12</A>
Yun, Y. K.; Vo, L.; Porco, Jr., J. A.; Labadie, J. 219th ACS National Meeting, 2000, ORGN 1.