Plant Biol (Stuttg) 2002; 4(2): 228-233
DOI: 10.1055/s-2002-25731
Original Paper
Georg Thieme Verlag Stuttgart ·New York

A Novel System for Spectral Analysis of Solar Radiation within a Mixed Beech-Spruce Stand

H. Reitmayer, H. Werner, P. Fabian
  • Department of Ecology / Bioclimatology and Pollution Research, Technische Universität München, Freising, Germany
Further Information

Publication History

May 28, 2001

November 21, 2001

Publication Date:
26 April 2002 (online)

Abstract

A multi-sensor system is described, based on a 1024 channel diode array spectrometer, to measure spectral radiant flux density in the range of 380 nm to 850 nm, with a resolution of 0.8 nm in minimal 16 milliseconds integration time per sensor (noon, clear sky conditions). 264 space-integrating 4π sensors deployed in the canopies and 2 m above stand floor are sequentially connected to the spectrometer by means of 30-m long fibre optics. During low-level conditions (dawn, overcast sky) the system automatically lengthens the integration time of the spectrometer. About 3 sec per sensor, i.e., 13 min for the total of 264 sensors (worst case) are needed to collect spectral energy data, store them on hard disk and move the channel multiplexer to the next fibre optic position. The detection limit of quartz fibre sensors is 0.2 W/m2; precision and absolute error of radiant flux density are smaller than 3 % and 10 %, respectively.

The system, operating since 1999, is derived from a 20-sensor pilot system developed for PAR measurements (PMMA fibre sensor, 400nm to 700 nm).

Data achieved with the system serve to determine vertical profiles of wavelength dependent radiation extinction, with special respect to R/FR ratios and to develop a model of spectral radiation distribution in a mature forest stand, prerequisites for the computation of carbon gain of the stand and the evaluation of stand growth models.

References

  • 01 Aaslyng,  J. M.,, Rosenqvist,  E.,, and Høgh-Schmidt,  K.. (1999);  A sensor for microclimatic measurement of photosynthetically active radiation in a plant canopy.  Agric. For. Meteorol.. 96 189-197
  • 02 Brown,  P. S. Jr., and Pandolfo,  J. P.. (1969);  An equivalent-obstacle model for the computation of radiative flux in obstructed layers.  Agric. Meteorol.. 6 407-421
  • 03 Brunner,  A.. (1998);  A light model for spatially explicit forest stand models.  For. Ecol. Manage.. 107 19-46
  • 04 Byrne,  G. F.. (1966);  A simple way of improving the angular response of solid-state photodetectors.  Agric. Meteorol.. 3 S 367-368
  • 05 Dohrenbusch,  A.. (1995);  Überlegungen zur Optimierung der Strahlungsmessung im Wald.  Allg. Forst- u. J. Ztg.. 6 109-114
  • 06 Gatherum,  G. E.. (1961);  Variation in measurements of light intensity under forest canopies.  For. Sci.. 7 144-145
  • 07 Gutschick,  V. P.,, Barron,  M. H.,, Waechter,  D. A.,, and Wolf,  M. A.. (1985);  Portable monitor for solar radiation that accumulates irradiance histograms for 32 leaf-mounted sensors.  Agric. For. Meteorol.. 33 281-290
  • 08 Hutchinson,  B. A., and Matt,  D. R.. (1977);  The annual cycle of solar radiation in a deciduous forest.  Agric. Meteorol.. 18 255-265
  • 09 Hutchinson,  B. A.,, Matt,  D. R.,, and McMillen,  R. T.. (1980);  Effect of sky brightness distribution upon penetration of diffuse radiation through canopy gaps in a deciduous forest.  Agric. Meteorol.. 22 137-147
  • 10 Grams,  T. E. E.,, Kozovits,  A. R.,, Reiter,  I. M.,, Winkler,  J. B.,, Sommerkorn,  M.,, Blaschke,  H.,, Häberle,  K.-H.,, and Matyssek,  R.. (2002);  Quantifying competiveness in woody plants.  Plant Biology. 4 153-158
  • 11 Grote,  R., and Pretzsch,  H.. (2002);  A model for individual development based on physiological processes.  Plant Biology. 4 173-186
  • 12 Knyazikhin,  Yu.,, Kranigk,  J.,, Myneni,  R. B.,, Panfyorov,  O.,, and Gravenhorst,  G.. (1998);  Influence of small-scale structure on radiative transfer and photosynthesis in vegetation canopies, Vol. 103.  J. Geophys. Res.. No. D6 6133-6144
  • 13 Knyazikhin,  Yu.,, Mießen,  G.,, Panfyorov,  O.,, and Gravenhorst,  G.. (1997);  Small-scale study of three-dimensional distribution of photosynthetically active radiation in a forest.  Agric. For. Meteorol.. 88 215-239
  • 14 McCree,  K. J.. (1972);  The action spectrum, absorptance and quantum yield of photosynthesis in crop plants.  Agric. Meteorol.. 9 191-216
  • 15 Monsi,  M., and Saeki,  T.. (1953);  Über den Lichtfaktor in den Pflanzengesellschaften und seine Bedeutung für die Stoffproduktion.  Jap. J. Bot.. 14 22-52
  • 16 Ögren,  E., and Sjöström,  M.. (1990);  Estimation of the effect of photoinhibition on the carbon gain in leaves of a willow canopy.  Planta. 181 560-567
  • 17 Oker-Blom,  P.,, Pukkala,  T.,, and Kuuluvainen,  T.. (1989);  Relationship between radiation interception and photosyntheses in forest canopies: effect of stand structure and latitude.  Ecol. Modelling. 49 73-87
  • 18 Palva,  L.,, Garam,  E.,, Manoochehri,  F.,, Seppoenen,  R.,, Hari,  P.,, Rajala,  K.,, Ruotoistenmäki,  H.,, and Seppälä,  I.. (1998);  A novel multipoint measuring system of photosynthetically active radiation.  Agric. For. Meteorol.. 89 141-147
  • 19 Pukkala,  T.,, Becker,  P.,, Kuuluvainen,  T.,, and Oker-Blom,  P.. (1991);  Predicting spatial distribution of direct radiation below forest canopies.  Agric. For. Meteorol.. 55 295-307
  • 20 Reifsnyder,  W. E.,, Furnaval,  G. M.,, and Horowitz,  J. L.. (1971);  Spatial and temporal distribution of solar radiation beneath forest canopies.  Agric. Meteorol.. 9 21-37
  • 21 Reitmayer,  H.. (2000) Quantifizierung des spektralen Angebotes photosynthetisch aktiver Strahlung (PAR) innerhalb eines Fichten-Buchen-Mischbestandes. Technical University Munich; PhD Thesis
  • 22 Sinclair,  T. R., and Knoerr,  K. R.. (1982);  Distribution of photosynthetically active radiation in the canopy of a loblolly pine plantation.  J. Appl. Ecol.. 19 183-191
  • 23 Sinoquet,  H.,, Rakocevic,  M.,, and Varlet-Grancher,  C.. (2000);  Comparison of models for daily light partitioning in multispecies canopies.  Agric. For. Meteorol.. 101 251-263
  • 24 Smolander,  H.. (1984);  Measurement of fluctuating irradiance in field studies of photosynthesis.  Acta Forest. Fenn.. 187 1-56
  • 25 Stadt,  K. J., and Lieffers,  V. J.. (2000);  MIXLIGHT: a flexible light transmission model for mixed-species forest stands.  Agric. For. Meteorol.. 102 235-252
  • 26 Szwarcbaum,  I., and Shaviv,  G.. (1976);  A monte-carlo model for the radiation field in plant canopies.  Agric. Meteorol.. 17 333-352
  • 27 Zelawski,  W.,, Szaniawski,  R.,, Dybczynski,  W.,, and Piechurowski,  A.. (1973);  Photosynthetic capacity of conifers in diffuse light of high illuminance.  Photosynthetica. 7 351-357

H. Reitmayer

Department of Ecology/Bioclimatology and Pollution Research
Technische Universität München

Am Hochanger 13
85354 Freising
Germany

Section Editor: U. Lüttge

    >