Abstract
Transition metal complexes encompass a unique pool of building blocks with diverse
stereochemical, electrochemical and photophysical features. Despite the current interest
in employing polypyridine-containing coordination compounds for the fabrication of
functional assemblies, their full potential as synthetic building blocks remains under-utilized.
The account discusses the inspiration and rationale for advancing the synthetic chemistry
of coordination compounds and presents recent developments where the complexity of
these intriguing ‘inorganic’ building blocks is increased via ‘organic’ transformations.
1 Introduction
2 Why Metal-Containing Materials?
3 Why Develop the Organic Chemistry of Coordination Compounds?
4 Selecting a Parent Ligand
5 Functionalizing 1,10-Phenanthroline
6 Coordination Compounds as Building Blocks
6.1 Cross-Coupling Reactions
6.2 Radical Transformations
6.3 Nucleophilic Aromatic Substitutions
7 Where do we go from here?
8 Summary
Key words
coordination compounds - cross coupling - metal-containing materials - nucleophilic
aromatic substitutions - 1,10-phenanthroline
References
<A NAME="RA28801ST-1A">1a </A>
Kauffman GB.
Inorganic Coordination Compounds
Heyden and Sons;
London:
1981.
<A NAME="RA28801ST-1B">1b </A>
Coordination Chemistry A Century of Progress
Kauffman GB.
ACS Symposium Series 565, American Chemical Society;
Washington DC:
1994.
<A NAME="RA28801ST-2">2 </A>
The terms ‘organic’ and ‘inorganic’ are placed in quotation marks for obvious reasons.
Coordination compounds, where an ‘inorganic’ ion is surrounded by ‘organic’ ligands
represent the ultimate hybrid of disciplines.
<A NAME="RA28801ST-3A">3a </A>
Reactions of Coordinated Ligands
Vol. 1:
Braterman PS.
Plenum Press;
New York:
1986.
<A NAME="RA28801ST-3B">3b </A>
Reactions of Coordinated Ligands
Vol. 2:
Braterman PS.
Plenum Press;
New York:
1989.
<A NAME="RA28801ST-3C">3c </A>
Constable EC.
Metals and Ligand Reactivity, An Introduction to the Organic Chemistry of Metal Complexes
VCH;
Weinheim:
1996.
Selected references for metal-containing materials:
<A NAME="RA28801ST-4A">4a </A>
Chen C.-T.
Suslick KS.
Coord. Chem. Rev.
1993,
128:
293
<A NAME="RA28801ST-4B">4b </A>
Manners I.
Angew. Chem., Int. Ed. Engl.
1996,
35:
1602
<A NAME="RA28801ST-4C">4c </A>
Manners I.
Chem. Britain
1996,
46
<A NAME="RA28801ST-4D">4d </A>
Pomogailo AD.
Savost’yanov VS.
Synthesis and Polymerization of Metal-Containing Monomers
CRC Press;
Boca Raton:
1994.
<A NAME="RA28801ST-5">5 </A>
Ref.
[1a ]
, p. 56.
<A NAME="RA28801ST-6">6 </A>
Kahr B.
Lovell S.
Subramonym JA.
Chirality
1998,
10:
66
<A NAME="RA28801ST-7">7 </A>
Orna MV.
Kozlowski AW.
Baskinger A.
Adams T. In Coordination Chemistry, A Century of Progress 1893-1993
Kauffman GB.
ACS Symposium Series 565, American Chemical Society;
Washington DC:
1994.
p.165
<A NAME="RA28801ST-8A">8a </A>
Wilcox DH.
In Werner Centennial
Vol 62:
Kauffman GB.
Adv. Chem. Ser., American Chemical Society;
Washington DC:
1967.
p.86
<A NAME="RA28801ST-8B">8b </A>
The affinity of Werner to dyes is not so surprising. Werner, who was trained as an
organic chemist, was born in Mulhouse (the center of the Alsatian dyeing industry)
and early on interacted with Noetling, one of the great dye chemists of the time.
<A NAME="RA28801ST-9">9 </A> See also:
Wizinger R.
Angew. Chem.
1950,
62:
203
For recent review articles, see:
<A NAME="RA28801ST-10A">10a </A>
Balzani V.
Credi A.
Venturi M.
Coord. Chem. Rev.
1998,
171:
3
<A NAME="RA28801ST-10B">10b </A>
Ziessel R.
Hissler M.
El-ghayoury A.
Harriman A.
Coord. Chem. Rev.
1998,
180:
1251
<A NAME="RA28801ST-10C">10c </A> For multiphoton, multielectron transfer processes in metal-containing polymers,
see:
Worl LA.
Jones WE.
Strouse GF.
Younathan JN.
Danielson E.
Maxwell KA.
Sykora M.
Meyer TJ.
Inorg. Chem.
1999,
38:
2705
<A NAME="RA28801ST-11A">11a </A>
Kalyanasundaram K.
Coord. Chem. Rev.
1982,
46:
159
<A NAME="RA28801ST-11B">11b </A>
Moser JE.
Bonnote P.
Grätzel M.
Coord. Chem. Rev.
1998,
171:
245
<A NAME="RA28801ST-11C">11c </A>
Sykora M.
Maxwell KA.
DeSimone JM.
Meyer TJ.
Proc. Natl. Acad. Sci. U.S.A
2000,
97:
7687
<A NAME="RA28801ST-12">12 </A>
Campagna S.
Denti G.
Serroni S.
Juris A.
Venturi M.
Ricevuto V.
Balzani V.
Chem.-Eur. J.
1995,
1:
211
<A NAME="RA28801ST-13">13 </A>
Lehn J.-M.
Supramolecular Chemistry: Concepts and Perspective
VCH;
Weinheim:
1995.
<A NAME="RA28801ST-14">14 </A>
Demas JN.
DeGraff BA.
Coord. Chem. Rev.
2001,
211:
317
For excellent review articles, see:
<A NAME="RA28801ST-15A">15a </A>
Juris A.
Balzani V.
Barigelletti F.
Campagna S.
Belser P.
Von Zelewsky A.
Coord. Chem. Rev.
1988,
84:
85
<A NAME="RA28801ST-15B">15b </A>
Sauvage J.-P.
Collin J.-P.
Chambron J.-C.
Guillerez S.
Coudret C.
Balzani V.
Barigelletti F.
De Cola L.
Flamigni L.
Chem. Rev.
1994,
94:
993
<A NAME="RA28801ST-15C">15c </A>
Balzani V.
Juris A.
Venturi M.
Campagna S.
Serroni S.
Chem. Rev.
1996,
96:
759
<A NAME="RA28801ST-16A">16a </A>
Barigelletti F.
Flamigni L.
Collin J.-P.
Sauvage J.-P.
Chem. Commun.
1997,
333
<A NAME="RA28801ST-16B">16b </A>
De Cola L.
Belser P.
Coord. Chem. Rev.
1998,
177:
301
<A NAME="RA28801ST-16C">16c </A>
Harriman A.
Ziessel R.
Coord. Chem. Rev.
1998,
171:
331
<A NAME="RA28801ST-16D">16d </A>
Barigelletti F.
Flamigni L.
Chem. Soc. Rev.
2000,
29:
1
<A NAME="RA28801ST-16E">16e </A>
Dixon IM.
Collin J.-P.
Sauvage JP.
Flamigni L.
Encinas S.
Barigelletti F.
Chem. Soc. Rev.
2000,
29:
385
<A NAME="RA28801ST-17A">17a </A>
Constable EC.
Chem. Ind. (London)
1994,
56
<A NAME="RA28801ST-17B">17b </A>
Constable EC.
Chem. Commun.
1997,
1073
<A NAME="RA28801ST-17C">17c </A>
Swiegers GF.
Malefetse TJ.
Chem.-Eur. J.
2001,
7:
3636
<A NAME="RA28801ST-18">18 </A> For a novel ‘complexes as metals and complexes as ligands’ strategy, see:
Denti G.
Campagna S.
Serroni S.
Ciano M.
Balzani V.
J. Am. Chem. Soc.
1992,
114:
2944
<A NAME="RA28801ST-19">19 </A> It is important to note that a significant amount of early work has been devoted
to exploring the effect(s) of metal coordination on ligand reactivity without considerable
attention to synthetic applications. See:
Jones MM.
Ligand Reactivity and Catalysis
Academic Press;
New York:
1968.
<A NAME="RA28801ST-20">20 </A>
Kaes C.
Katz A.
Hosseini MW.
Chem. Rev.
2000,
100:
3553
<A NAME="RA28801ST-21">21 </A>
Kröhnke F.
Synthesis
1976,
1
<A NAME="RA28801ST-22">22 </A>
Manske RHF.
Kulka M.
Org. React.
1953,
7:
59
<A NAME="RA28801ST-23">23 </A> For a review that summarizes the applications of phenanthroline ligands in bioorganic
chemistry, molecular recognition and supramolecular chemistry, see:
Sammes PG.
Yahioglu G.
Chem. Soc. Rev.
1994,
23:
327
<A NAME="RA28801ST-24">24 </A>
Levis M.
Lüning U.
Müller M.
Schmittel-Wöhrle C.
Z. Naturforscher
1994,
49b:
675
<A NAME="RA28801ST-25">25 </A>
Bosnich B.
Acc. Chem. Res.
1969,
2:
266
<A NAME="RA28801ST-26">26 </A> For the multi-step syntheses of bromo derivatives of 1,10-phenanthroline using
the Skraup reaction, see:
Case FH.
J. Org. Chem.
1951,
16:
941
<A NAME="RA28801ST-27">27 </A>
The final cyclization step is a Skraup reaction between 8-amino-3-bromoquinoline and
a protected hydrate of bromoacrolein. It affords 3,8-dibromo-1,10-phenanthroline in
4.4% yield.
<A NAME="RA28801ST-28A">28a </A> For a monograph, see:
Katritzky AR.
Taylor R.
Electrophilic Substitution of Heterocycles: Quantitative Aspects, In Advanced Heterocyclic Chem istry
Vol. 47:
Academic Press;
San Diego:
1990.
<A NAME="RA28801ST-28B">28b </A> For an early review, see:
Graham B. In The Chemistry of Heterocyclic Compounds
Allen CFH.
Interscience Publishers, Inc.;
New York:
1958.
p.386
<A NAME="RA28801ST-28C">28c </A> A direct bromination reaction that gives low yields of di-, tri- and tetrabrominated
phenanthrolines and traces of the 3- and 5-bromo derivatives has been reported:
Denes V.
Chira R.
J. Prakt. Chem.
1978,
320:
172
<A NAME="RA28801ST-29">29 </A>
Kress TJ.
Costantino SM.
J. Heterocycl. Chem.
1973,
10:
409
<A NAME="RA28801ST-30">30 </A>
Tzalis D.
Tor Y.
Failla S.
Siegel JS.
Tetrahedron Lett.
1995,
36:
3489
<A NAME="RA28801ST-31">31 </A>
Typical yields are 25-35% for 1 and 20-25% for 2 . Altering the reaction conditions results in changes in the ratio between the mono
and dibromo derivatives, as well as the amounts of higher brominated side products.
<A NAME="RA28801ST-32">32 </A>
Connors PJ.
Tzalis D.
Dunnick AL.
Tor Y.
Inorg. Chem.
1998,
37:
1121
<A NAME="RA28801ST-33">33 </A>
Some of these interesting brominated phenanthrolines were also synthesized by Case.
See ref.
[26 ]
<A NAME="RA28801ST-34">34 </A>
Toyota S.
Woods CR.
Siegel JS.
Tetrahedron Lett.
1998,
39:
2697
<A NAME="RA28801ST-35A">35a </A> Interestingly, Yamamoto has reported a bromination reaction of phen to 3,8-dibromo-1,10-phenanthroline
in S2 Cl2 and pyridine claiming the exclusive formation of the desired product. See:
Saito Y.
Koizumi T.
Osakada K.
Yamamoto T.
Can. J. Chem.
1997,
75:
1336
<A NAME="RA28801ST-35B">35b </A> Sauvage has reported an optimized procedure. See:
Dietrich-Buchecker C.
Jimenez MC.
Sauvage J.-P.
Tetrahedron Lett.
1999,
40:
3395
For selected reviews, see:
<A NAME="RA28801ST-36A">36a </A>
Sonogashira K.
Comp. Org. Synth.
1991,
3:
521
<A NAME="RA28801ST-36B">36b </A>
Hegedus LS. In Transition Metals in the Synthesis of Complex Organic Molecules
University Science Books;
Mill Valley:
1994.
p.65
<A NAME="RA28801ST-36C">36c </A>
Rossi R.
Carpita A.
Bellina F.
Org. Prep. Proc. Int.
1995,
27:
127
<A NAME="RA28801ST-37">37 </A>
Nicolaou KC.
Sorensen EJ.
Classics in Total Synthesis, Targets, Strategies, Methods
VCH;
Weinheim:
1996.
p.565
<A NAME="RA28801ST-38A">38a </A>
Hartwig JF.
Acc. Chem. Res.
1998,
31:
852
<A NAME="RA28801ST-38B">38b </A>
Hartwig JF.
Angew. Chem. Int. Ed.
1998,
37:
2047
<A NAME="RA28801ST-38C">38c </A>
Yang BH.
Buchwald SL.
J. Organometal. Chem.
1999,
576:
125
<A NAME="RA28801ST-38D">38d </A>
Wolfe JP.
Wagaw S.
Marcoux JF.
Buchwald SL.
Acc. Chem. Res.
1998,
31:
805
<A NAME="RA28801ST-39">39 </A>
Tzalis D.
Tor Y.
Chem. Commun.
1996,
1043
<A NAME="RA28801ST-40">40 </A>
For example, the reaction of 4 with 4-ethynyltoluene gave 8 in 91% isolated yield after 1 h at r.t.
<A NAME="RA28801ST-41">41 </A> At about the same time, Collin’s group at Strasbourg reported the use of functionalized
tpy-based RuII complexes as building blocks using Suzuki cross-coupling reactions. See:
Chodorowski-Kimmes S.
Beley M.
Collin J.-P.
Sauvage J.-P.
Tetrahedron Lett.
1996,
37:
2963
<A NAME="RA28801ST-42">42 </A>
Tzalis D.
Tor Y.
J. Am. Chem. Soc.
1997,
118:
852
<A NAME="RA28801ST-43A">43a </A>
Hurley DJ.
Tor Y.
J. Am. Chem. Soc.
1998,
120:
2194
<A NAME="RA28801ST-43B">43b </A>
Hurley DJ.
Tor Y.
J. Am. Chem. Soc.
2002,
124:
3749
<A NAME="RA28801ST-44">44 </A>
Joshi HS.
Tor Y.
Chem. Commun.
2001,
549
<A NAME="RA28801ST-45">45 </A>
Hurley DJ.
Ph.D. Thesis
University of California;
San Diego:
2000.
<A NAME="RA28801ST-46">46 </A>
Weizman, H.; Tor, Y. unpublished results .
<A NAME="RA28801ST-47">47 </A>
Glazer EC.
Tor Y.
Polymer Preprints
1999,
40:
513
<A NAME="RA28801ST-48A">48a </A>
Jasperse CP.
Curran DP.
Fevig TL.
Chem. Rev.
1991,
91:
1237
<A NAME="RA28801ST-48B">48b </A>
Curran DP.
Comp. Org. Synth.
1991,
4:
779
<A NAME="RA28801ST-49">49 </A>
Porter NA.
Giese B.
Curran DP.
Acc. Chem. Res.
1991,
24:
296
<A NAME="RA28801ST-50">50 </A>
Hurley, D. J.; Tor, Y. unpublished results .
<A NAME="RA28801ST-51A">51a </A> For an early review, see:
Semmelhack MF.
Comp. Org. Synth.
1991,
4:
517
<A NAME="RA28801ST-51B">51b </A> For selected recent examples, see:
Janetka JW.
Rich DH.
J. Am. Chem. Soc.
1997,
119:
6488
<A NAME="RA28801ST-51C">51c </A> See also:
Pearson AJ.
Gontcharov AV.
J. Org. Chem.
1998,
63:
152
<A NAME="RA28801ST-51D">51d </A>
Pearson AJ.
Chelliah MV.
J. Org. Chem.
1998,
63:
3087
<A NAME="RA28801ST-51E">51e </A>
Pearson AJ.
Heo J.-N.
Org. Lett.
2000,
2:
2987
<A NAME="RA28801ST-51F">51f </A>
Pearson AJ.
Heo J.-N.
Tetrahedron Lett.
2000,
41:
5991
<A NAME="RA28801ST-51G">51g </A>
Ghebreyessus KY.
Nelson JH.
Organometallics
2000,
19:
3387
<A NAME="RA28801ST-52">52 </A> For an early review, see:
Constable EC.
Polyhedron
1983,
2:
551
<A NAME="RA28801ST-53">53 </A>
Richard AF.
Ridd JH.
Tobe ML.
Chem. Ind. (London)
1963,
1727
<A NAME="RA28801ST-54A">54a </A>
Gillard RD.
Hill REE.
Maskill R.
J. Chem. Soc. A
1970,
1447
<A NAME="RA28801ST-54B">54b </A>
See also ref.
[3b ]
and ref.
[19 ]
<A NAME="RA28801ST-55">55 </A>
Jackson K.
Ridd JH.
Tobe ML.
J. Chem. Soc., Perkin Trans. 2
1979,
611
<A NAME="RA28801ST-56A">56a </A>
Constable EC.
Inorg. Chim. Acta.
1984,
82:
53
<A NAME="RA28801ST-56B">56b </A>
Constable EC.
Leese TA.
Inorg. Chim. Acta.
1988,
146:
55
<A NAME="RA28801ST-57">57 </A>
Constable EC.
Cargill Thompson AMW.
Harveson P.
Macko L.
Zehnder M.
Chem- Eur. J.
1995,
1:
360
<A NAME="RA28801ST-58A">58a </A>
Constable EC.
Inorg. Chim. Acta
1986,
117:
L33
<A NAME="RA28801ST-58B">58b </A> See also:
Constable EC.
Phillips V.
Chem. Commun.
1997,
827
<A NAME="RA28801ST-59">59 </A>
Tzalis D.
Tor Y.
Angew. Chem., Int. Ed. Engl.
1997,
36:
2666
<A NAME="RA28801ST-60">60 </A>
Miller J.
Aromatic Nucleophilic Substitutions
Elsevier;
New York:
1968.
<A NAME="RA28801ST-61">61 </A>
Hurley DJ.
Roppe JR.
Tor Y.
Chem. Commun.
1999,
993
<A NAME="RA28801ST-62">62 </A>
Hurley DJ.
Tor Y.
Tetrahedron Lett.
2001,
42:
7217
<A NAME="RA28801ST-63A">63a </A>
Erkkila KE.
Odom DT.
Barton JK.
Chem. Rev.
1999,
99:
2777
<A NAME="RA28801ST-63B">63b </A>
Chambron J.-C.
Sauvage J.-P.
Amouyal E.
Koffi P.
Nouv. J. Chim.
1985,
9:
527
<A NAME="RA28801ST-63C">63c </A> For the original synthesis of dppz, see:
Dickeson JE.
Summers LA.
Aust. J. Chem.
1970,
23:
1023
<A NAME="RA28801ST-64">64 </A>
Glazer, E. C.; Tor, Y. submitted .
<A NAME="RA28801ST-65">65 </A>
Rudi A.
Benayahu Y.
Goldberg I.
Kashman Y.
Tetrahedron Lett.
1988,
29:
6655
<A NAME="RA28801ST-66">66 </A>
Rudi A.
Kashman Y.
Gut D.
Lellouche F.
Kol M.
Chem. Commun.
1997,
17
<A NAME="RA28801ST-67">67 </A>
Luedtke NW.
Hwang JS.
Glazer EC.
Gut D.
Kol M.
Tor Y.
ChemBioChem, in press