References
<A NAME="RY07402ST-1A">1a</A>
Kushwaha SC.
Kates M.
Sprott GD.
Smith ICP.
Biochim. Biophys. Acta
1981,
664:
156
<A NAME="RY07402ST-1B">1b</A>
Comita PB.
Gagosian RB.
Pang H.
Costello CE.
J.
Biol. Chem.
1984,
254:
15234
<A NAME="RY07402ST-1C">1c</A>
Eguchi T.
Arakawa K.
Terachi T.
Kakinuma K.
J. Org. Chem.
1997,
62:
1924
<A NAME="RY07402ST-1D">1d</A>
Eguchi T.
Ibaragi K.
Kakinuma K.
J.
Org. Chem.
1998,
63:
2689
<A NAME="RY07402ST-1E">1e</A>
Aoki T.
Poulter CD.
J. Org. Chem.
1985,
50:
5634
<A NAME="RY07402ST-2A">2a</A>
Menger FM.
Chen XY.
Tetrahedron
Lett.
1996,
37:
323
<A NAME="RY07402ST-2B">2b</A>
Menger FM.
Chen XF.
Brocchini S.
Hopkins HP.
Hamilton D.
J. Am. Chem. Soc.
1993,
115:
6600
<A NAME="RY07402ST-2C">2c</A>
Yamauchi K.
Sakamoto Y.
Moriya A.
Yamada K.
Hosokawa T.
Higuchi T.
Kinoshita M.
J.
Am. Chem. Soc.
1990,
112:
3188
<A NAME="RY07402ST-2D">2d</A>
Moss RA.
Li JM.
J.
Am. Chem. Soc.
1992,
114:
9227
<A NAME="RY07402ST-2E">2e</A>
Fuhrhop J.-H.
David HH.
Mathieu L.
Liman U.
Winter HJ.
Boekema E.
J. Am. Chem. Soc.
1986,
108:
1785
<A NAME="RY07402ST-2F">2f</A>
Meglio CD.
Rananavare SB.
Svenson S.
Thompson DH.
Langmuir
2000,
16:
128
<A NAME="RY07402ST-2G">2g</A>
Kim JM.
Thompson DH.
Langmuir
1992,
8:
637
<A NAME="RY07402ST-2H">2h</A>
Ladika M.
Fisk TE.
Wu WW.
Jons SD.
J. Am. Chem. Soc.
1994,
116:
12093
<A NAME="RY07402ST-2I">2i</A>
Patwarahan AP.
Thompson DH.
Org.
Lett.
1999,
1:
241
<A NAME="RY07402ST-3A">3a</A>
Schnur JM.
Science
1993,
262:
1669
<A NAME="RY07402ST-3B">3b</A>
Spector MS.
Price RR.
Schnur JM.
Adv. Mater.
1999,
11:
337
<A NAME="RY07402ST-3C">3c</A>
Schnur JM.
Ratna BR.
Selinger JV.
Singh A.
Jyothi G.
Easwaran RK.
Science
1994,
264:
945
<A NAME="RY07402ST-3D">3d</A>
Selinger JV.
Schnur JM.
Phys.
Rev. Lett.
1993,
71:
4091
<A NAME="RY07402ST-3E">3e</A>
Spector MS.
Selinger JV.
Singh A.
Rodriguez JM.
Price RP.
Schnur JM.
Langmuir
1998,
14:
3493
<A NAME="RY07402ST-4A">4a</A> Amphiphilic
molecules containing a polar head group at the end of a hydrophobic
segment have been termed ‘bolaamphiphiles’:
Fuhrhop J.-H.
Mathiewu J.
Angew. Chem.,
Int. Ed. Engl.
1984,
23:
100
<A NAME="RY07402ST-4B">4b</A> Also termed ‘bolaphile’:
Jayasuriya N.
Bosak S.
Regen SL.
J. Am. Chem. Soc.
1990,
112:
5844
<A NAME="RY07402ST-4C">4c</A>
While amphiphiles having a
macrocyclic ring as a hydrophobic segment have been termed ‘macrocyclic
bolaamphiphiles’ (see Ref.
[2a]
),
we prefer to adopt the abbreviated and more readily pronounceable
term, ‘cyclobolaphile’.
<A NAME="RY07402ST-5A">5a</A> We
term caldarchaeol with a parallel arrangement of glycerol units ‘parallel
caldarchaeol’, and that with an antiparallel arrangement ‘antiparallel
caldarchaeol’:
Gräther O.
Arigoni D.
J. Chem. Soc., Chem. Commun.
1995,
405
<A NAME="RY07402ST-5B">5b</A>
Nishihara M.
Morii H.
Koga Y.
J. Biochem.
1987,
101:
1007
<A NAME="RY07402ST-6">6</A>
Intense examination of macrocyclic
synthetic methods that have been previously reported indicates that
only our strategy has the potential to provide three stereoisomers
of parallel cyclobolaphiles that contain diacetylene units (see Ref.
[1c]
[d]
[2]
).
<A NAME="RY07402ST-7">7</A>
Qin D.
Byun H.
Bittman R.
J. Am. Chem.
Soc.
1999,
121:
662
<A NAME="RY07402ST-8">8</A>
Carvalho JF.
Prestwich GD.
J. Org. Chem.
1984,
49:
1251
<A NAME="RY07402ST-9">9</A>
Hirth G.
Barner R.
Helv. Chim. Acta
1982,
65:
1059
<A NAME="RY07402ST-10">10</A>
Oikawa Y.
Yoshioka T.
Yonemitsu O.
Tetrahedron
Lett.
1982,
23:
885
<A NAME="RY07402ST-11">11</A>
All new compounds gave satisfactory
analytical and spectral data. Selected physical data are as follows: 4: Stage yellow oil, Rf = 0.55 [hexane/ethyl
acetate (2:1, v/v)], [α]D
28 -1.67 (c 0.24, CHCl3). 1H
NMR (500 MHz, CDCl3): δ = 7.45-7.39 (m,
12 H), 7.27-7.19 (m, 18 H), 7.16 (d, J = 8.8
Hz, 4 H), 6.81 (d, J = 8.5
Hz, 4 H), 4.44 (d, J = 11.6
Hz, 2 H), 4.40 (d, J = 11.9
Hz, 2 H), 3.77 (s, 6 H), 3.56-3.49 (m, 10 H), 3.17 (d, J = 4.6 Hz,
4 H), 2.19 (t, J = 7.2
Hz, 4 H), 1.56-1.44 (m, 8 H), 1.34-1.24 (m, 16
H) ppm. 13C NMR (100 MHz, CDCl3): δ = 159.06,
144.09, 130.48, 129.13, 128.72, 127.70, 126.87, 113.62, 86.48, 78.29,
77.52, 72.87, 70.60, 70.09, 65.22, 63.44, 55.24, 30.06, 29.33, 29.07,
28.82, 28.32, 26.10, 19.17 ppm. Anal. Calcd for C80H90O8:
C, 81.46; H, 7.69%. Found: C, 81.43; H, 7.66%. 8: Stage pale yellow oil, Rf = 0.13 [hexane/ethyl
acetate (2:1, v/v)], [α]D
28 -9.80
(c 0.60, CHCl3). 1H
NMR (500 MHz, CDCl3): δ = 3.72-3.48 (m,
18 H), 2.23 (t, J = 6.9
Hz, 8 H), 2.17 (brs, 2 H), 1.65-1.42 (m, 16 H), 1.40-1.19
(m, 32 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 78.44,
77.41, 71.60, 71.08, 70.34, 65.31, 62.90, 29.95, 29.46, 29.26, 29.10,
28.93, 28.58, 28.19, 25.93, 19.11 ppm. LRMS (FAB): m/z = 725 [(M + H)+]. Anal.
Calcd for C46H76O6: C, 76.20; H,
10.56%. Found: C, 76.19; H, 10.81%. 10: [α]D
28 +9.67
(c 0.30, CHCl3). 15: [α]D
28 0.00
(c 0.45, CHCl3). (2R,27R)-1: Stage pale yellow solid, Rf = 0.1 [CHCl3/MeOH/H2O
(65:25:4, v/v/v)]. [α]D
28 +5.81
(c 0.75, MeOH). 1H
NMR [500 MHz, CDCl3/CD3OD (97:3,
v/v)]: δ = 4.24 (brs, 4 H),
3.84 (t, J = 5.3
Hz, 4 H), 3.65 (brs, 4 H), 3.58-3.51 (m, 8 H), 3.43-3.37
(m, 6 H), 3.24 (s, 18 H), 2.21 (t, J = 6.7
Hz, 8 H), 1.49-1.43 (m, 16 H), 1.34-1.20 (m, 32
H) ppm. 13C NMR (125 MHz, CD3OD):
δ = 79.50,
77.97, 72.46, 72.01, 71.49, 67.47, 66.57, 66.20, 60.37, 54.69, 31.21,
30.78, 30.41, 30.24, 29.98, 29.83, 29.58, 27.29, 19.79 ppm. 31P
NMR [200 MHz, CDCl3/CD3OD
(99:1, v/v)]: δ = -0.50
(s)ppm. LRMS (FAB): m/z = 1054
(M+), 995 [(M - (Me)3N)+].
Anal. Calcd for C56H100N2O12P2·2
H2O: C, 61.63; H, 9.60; N, 2.57%. Found: C,
61.59; H, 9.43; N, 2.56%. (2S,27S)-1: [α]D
28 -5.77
(c 0.70, MeOH). (2R,27S)-1: [α]D
28 +0.00
(c 0.37, MeOH). The spectral
data of (2R,27S)-1 and (2S,27S)-1 were identical with
those of (2R,27R)-1.
<A NAME="RY07402ST-12">12</A>
Hansen WJ.
Murari R.
Wedmid Y.
Baumann WJ.
Lipids
1982,
17:
453
<A NAME="RY07402ST-13">13</A>
Alami M.
Ferri F.
Tetrahedron Lett.
1996,
37:
2763