Subscribe to RSS
DOI: 10.1055/s-2002-33521
Stereoselective Functionalization 
      of Dithiolanes and Dithianes: The First 
Example of an 
      Axial Trapping
Publication History
Publication Date:
17 September 2002 (online)
Abstract
2-Silyl-1,3-dithiolanes and dithianes can be easily functionalized under fluoride ion conditions. The functionalization occurs stereoselectively, the products bearing the incoming groups in the position formerly occupied by the silyl moiety. These results lead to the first example of dithiolane and dithiane axial trapping.
Key words
dithiolanes - dithianes - stereoselectivity - organosilanes - fluoride ion
- 1a 
             
            
Seebach D. Synthesis 1969, 17 - 1b 
             
            
Seebach D.Corey EJ. J. Org. Chem. 1975, 40: 231 - 1c 
             
            
Bulman Page PC.van Niel MB.Prodger JC. Tetrahedron 1989, 45: 7643 - 2 
             
            
Oida T.Tanimoto S.Terao H.Okano M. J. Chem. Soc., Perkin Trans. 1 1986, 1715 - 3a 
             
            
Wilson SR.Georgiadis GM.Khatri HN.Bartmess JE. J. Am. Chem. Soc. 1980, 102: 3577 - 3b 
             
            
Wilson SR.Caldera P.Jester MA. J. Org. Chem. 1982, 47: 3319 - 4a 
             
            
Capperucci A.Ferrara MC.Degl’Innocenti A.Bonini BF.Mazzanti G.Zani P.Ricci A. Synlett 1992, 880 - 4b 
             
            
Capperucci A.Degl’Innocenti A.Leriverend C.Metzner P. J. Org. Chem. 1996, 6: 7174 - 4c 
             
            
Degl’Innocenti A.Capperucci A. Eur. J. Org. Chem. 2000, 2171 ; and references cited therein - 4d 
             
            
Cerè V.Peri F.Pollicino S. Heterocycles 1999, 51: 1025 - 4e 
             
            
Carini S.Cerè V.Peri F.Pollicino S. Synthesis 2000, 1756 - 5 
             
            
Capperucci A.Degl’Innocenti A.Nocentini T. Tetrahedron Lett. 2001, 42: 4557 - 6 
             
            
See Chan TH.Lau PWK.Li MP. Tetrahedron Lett. 1976, 2667 - 7 
             
            
Overberger CG.Drucker A. J. Org. Chem. 1964, 29: 360 - 10a 
             
            
Denmark SE.Almstead NG. J. Org. Chem. 1994, 59: 5130 - 10b 
             
            
Corriu R. Pure Appl. Chem. 1988, 60: 99 - 10c 
             
            
Chan TH.Fleming I. Synthesis 1979, 761 - 11 
             
            
Dubuffet T.Sauvetre R.Normant JF. Tetrahedron Lett. 1988, 29: 5923 - 12a 
             
            
Palmer WS.Woerpel KA. Organometallics 1997, 16: 1097 - 12b 
             
            
Shaw JT.Woerpel KA. J. Org. Chem. 1997, 62: 442 - 12c 
             
            
Bodnar PM.Palmer WS.Shaw JT.Smitrovich JH.Sonnenberg JD.Presley AL.Woerpel KA. J. Am. Chem. Soc. 1995, 117: 10575 ; and references cited therein - 13 
             
            
Hatanaka T.Hiyama T. J. Am. Chem. Soc. 1990, 112: 7793 - 14 
             
            
Corey EJ.Chen Z. Tetrahedron Lett. 1994, 35: 8731 - 15 
             
            
McDougall P.Condon BD. Tetrahedron Lett. 1989, 30: 789 - 16 
             
            
Thayumanavan S.Park YS.Farid P.Beak P. Tetrahedron Lett. 1997, 38: 5429 - 17 
             
            
Aggarwal VK.Ferrara M. Org. Lett. 2000, 2: 4107 - 18a 
             
            
Hartmann AA.Eliel EL. J. Am. Chem. Soc. 1971, 93: 2572 - 18b 
             
            
Eliel E.Abatjoglou AG.Hartmann AA. J. Am. Chem. Soc. 1972, 94: 4786 - 18c 
             
            
Eliel EL.Hartmann AA.Abatjoglou AG. J. Am. Chem. Soc. 1974, 96: 1807 - 18d 
             
            
Eliel EL. Tetrahedron 1974, 30: 1503 - 18e 
             
            
Abatjoglou AG.Eliel EL.Kuyper LF. J. Am. Chem. Soc. 1977, 99: 8262 - 19a 
             
            
Krief A.Defrere L. Tetrahedron Lett. 1996, 37: 2667 - 19b 
             
            
Krief A.Defrere L. Tetrahedron Lett. 1996, 37: 8011 - 20 
             
            
Krief A.Defrere L. Tetrahedron Lett. 1996, 37: 8015 - 21 
             
            
Corey EJ.Mitra RB. J. Am. Chem. Soc. 1962, 84: 2938 
References
A solution of methoxymethyl trimethylsilane (400 µL, 2.57 mmol) in CCl4 (5 mL), was treated dropwise with a solution of bromine (132 µL, 2.57 mmol) in CCl4 (4 mL). The mixture was stirred until it became colorless. A solution of dithiol 1 (315 µL, 2.57 mmol) in CH2Cl2 (5 mL) was then added and the mixture was stirred overnight. After washing with water, the organic layer was dried (Na2SO4). Eva-poration of the solvent gave 525 mg (2.55 mmol) of crude product 3 (99%), which was purified by chromatography on silica gel (hexanes/EtOAc 200:1), to afford the pure isomers 3a and 3b. 3a: 1H NMR(ppm): δ = 0.14 (s, 9 H), 1.25-1.28 (m, 6 H), 3.50-3.64 (m, 2 H), 3.69 (s, 1 H). 13C NMR(ppm): δ = -2.5, 16.5, 36.9, 53.2. MS: m/z (%) = 206 (5) [M+], 150 (11), 135 (32), 73 (100), 59 (16), 55 (11). Calcd for C8H18S2Si: C, 46.54; H, 8.79. Found: C, 46.20; H, 8.90. 3b: 1H NMR(ppm): δ = 0.16 (s, 9 H), 1.31 (d, 6 H, J = 6.6 Hz), 3.62-3.75 (m, 2 H), 3.81 (s, 1 H). 13C NMR(ppm): δ = -2.6, 15.5, 33.7, 53.4. MS: m/z (%) = 206 (30) [M+], 163 (25), 150 (71), 135 (100), 73 (89), 59 (56). Calcd for C8H18S2Si: C, 46.54; H, 8.79. Found: C, 46.32; H, 9.06.
9Typical Procedure : A solution of 2-trimethylsilyl-4,5-dimethyl-1,3-dithiolane 3a (134 mg, 0.65 mmol), and benzaldehyde (132 µL, 1.3 mmol) in anhyd DMF (3 mL) was stirred for 30 min on activated molecular sieves 4 Å, then CsF (99 mg 0.65 mmol) was added and stirred at r.t. overnight. Then, the solution was extracted with diethyl ether, washed with water, dried (Na2SO4) and evaporated. TLC of the crude mixture (8:1 hexane/EtOAc) gave 90 mg (0.37 mmol, 57%) of 4a. 1H NMR(ppm): δ = 1.32-1.39 (m, 6 H), 2.85 (bs, 1 H), 3.62-3.84 (m, 2 H), 4.73 (dd, 1 H, J = 7.0 Hz, 1.6 Hz), 4.86 (d, 1 H, J = 7.0 Hz), 7.32-7.44 (m, 5 H). 13C NMR(ppm): δ = 16.6, 17.1, 52.4, 53.5, 60.7, 77.3, 126.4, 128.3, 128.4, 141.2. MS: m/z (%) = 240 (0.08) [M+], 222 (5), 166 (5), 135 (15), 134 (34), 133 (100), 121 (6), 107 (8), 89 (11), 77 (25), 59 (16), 55 (22). Calcd for C12H16OS2: C, 59.96; H, 6.71. Found: C, 59.57; H, 6.75. Following the same procedure, starting from 100 mg (0.48 mmol) of 3b were obtained 62 mg (0.26 mmol, 54%) of 4b. 1H NMR(ppm): δ = 1.29 (d, 3 H, J = 6.6 Hz), 1.31 (d, 3 H, J = 6.6 Hz), 3.67-3.86 (m, 2 H), 4.64 (d, 1 H, J = 7.0 Hz), 4.73 (d, 1 H, J = 7.0 Hz), 7.28-7.44 (m, 5 H). 13C NMR(ppm): δ = 15.8, 16.5, 52.1, 52.7, 59.4, 77.4, 126.8, 128.2, 128.3, 140.6. MS: m/z (%) = 222 (21) [M+ - 18), 166 (16), 134 (100), 121 (22), 107 (35), 105 (23), 91 (24), 89 (33), 79 (67), 77 (96), 59 (40), 55 (31). Calcd for C12H16OS2: C, 59.96; H, 6.71. Found: C, 59.72; H, 6.93.
22
         meso-4,6-Dimethyl-1,3-dithiane 10 (57 mg, 0.39 mmol) dissolved under an 
         inert atmosphere in anhyd THF was cooled to -78 °C 
         and treated with butyllithium (244 µL,
1.6 M solution, 
         0.39 mmol), stirred 2 h, then cannulated into a -78 °C 
         cooled solution of Me3SiCl (51 mg, 0.46 mL, 0.47 mmol) 
         and stirred for an additional hour. After warming to
-20 °C, 
         the solution was diluted with ether and a solution of NH4Cl, 
         the organic layer separated and evaporated to afford 73 mg of crude 
         product 11a (85%). 1H 
         NMR(ppm): δ = 0.18 (s, 9 H), 1.22 (d, 6 H, J = 6.6 Hz), 
         1.15-1.25 (m, 1 H, partially overlapped with the peak at 
         1.22 ppm), 2.09 (dt,
1 H, J = 13.6 
         Hz, J = 2.4 
         Hz), 2.69-2.86 (m, 2 H), 3.64 (s,
1 H). 13C 
         NMR(ppm): δ = -2.5, 22.3, 36.3, 40.9, 
         44.6. MS: m/z (%) = 220 
         (7) [M
            +
            ], 
         147 (8), 115 (100), 73 (52), 69 (10), 59 (13). Calcd for C9H20S2Si: 
         C, 49.03; H, 9.14. Found: C, 48.80; H, 9.00.
         11b: Yield 
         69%. 1H NMR(ppm): δ = 0.17 
         (s, 9 H), 1.23 (d,
6 H, J = 7.0 
         Hz), 1.20-1.36 (m, 1 H), 1.96-2.09 (m, 1 H), 2.79-2.99 
         (m, 2 H), 3.20 (s, 1 H). 13C NMR(ppm): δ = -1.1, 23.1, 
         28.8, 36.2, 42.7. MS: m/z (%) = 220 
         (6) [M
            +
            ], 
         147 (11), 115 (100), 73 (77), 69 (13), 59 (19). Calcd for C8H18S2Si: 
         C, 46.54; H, 8.79. Found: C, 48.85; H, 9.08.
12a: Yield 72%. 1H NMR(ppm): δ = 1.23 (d, 3 H, J = 7.0 Hz), 1.26 (d, 3 H, J = 6.6 Hz), 1.27-1.34 (m, 1 H, partially overlapped with the peak at 1.26 ppm), 2.07 (dt, 1 H, J = 13.8 Hz, J = 2.4 Hz), 2.74-2.94 (m, 2 H), 4.49 (d, 1 H, J = 6.2 Hz), 4.93 (d, 1 H, J = 6.2 Hz), 7.31-7.52 (m, 5 H). 13C NMR(ppm): δ = 21.6, 21.7, 39.7, 40.1, 43.9, 57.3, 76.0, 126.4 128.3, 128.4, 140.1. MS: m/z (%) = 254 (1) [M + ], 199 (2), 147 (100), 105 (6), 91 (13), 77 (15), 69 (23). Calcd for C13H18OS2: C, 61.37; H, 7.13. Found: C, 61.05; H, 7.20.
2512b: Yield 63%. 1H NMR(ppm): δ = 1.18 (d, 3 H, J = 7.0 Hz), 1.26 (d, 3 H, J = 6.6 Hz), 1.25-1.43 (m, 1 H), 2.12 (dtd, 1 H, J = 13.6 Hz, J = 2.6 Hz, J = 1.2 Hz), 3.00-3.19 (m, 2 H), 3.75 (d, 1 H, J = 9.8 Hz), 4.80 (d, 1 H, J = 9.8 Hz), 7.31-7.44 (m, 5 H). 13C NMR(ppm): δ = 21.7, 33.7, 34.3, 43.5, 53.0, 73.8, 127.3, 128.1, 128.2, 140.7. MS: m/z (%) = 254 (0.04) [M + ], 236 (1), 147 (100), 134 (5), 105 (11), 77 (21, 69 (36), 59 (15). Calcd for C13H18OS2: C, 61.37; H, 7.13. Found: C, 61.00; H, 7.34.