References
<A NAME="RD09402ST-1A">1a</A>
Webb JS.
Cosulich DB.
Mowat JH.
Patrick JB.
Broschard RW.
Meyer WE.
Williams RP.
Wolf CF.
Fulmor W.
Pidacks C.
Lancaster JE.
J. Am. Chem. Soc.
1962,
84:
3185
<A NAME="RD09402ST-1B">1b</A>
Webb JS.
Cosulich DB.
Mowat JH.
Patrick JB.
Broschard RW.
Meyer WE.
Williams RP.
Wolf CF.
Fulmor W.
Pidacks C.
Lancaster JE.
J.
Am. Chem. Soc.
1962,
84:
3187
<A NAME="RD09402ST-2A">2a</A>
Nakatsubo K.
Fukuyama T.
Cocuzza AJ.
Kishi Y.
J.
Am. Chem. Soc.
1977,
99:
8115
<A NAME="RD09402ST-2B">2b</A>
Fukuyama T.
Nakatsubo K.
Cocuzza AJ.
Kishi Y.
Tetrahedron Lett.
1977,
18:
4295
<A NAME="RD09402ST-2C">2c</A>
Kishi Y.
J.
Nat. Prod.
1979,
42:
549
<A NAME="RD09402ST-2D">2d</A>
Fukuyama T.
Yang L.
J. Am. Chem. Soc.
1987,
109:
7881
<A NAME="RD09402ST-2E">2e</A>
Fukuyama T.
Yang L.
J. Am. Chem. Soc.
1989,
111:
8303
<A NAME="RD09402ST-2F">2f</A>
Benbow JW.
Schulte GK.
Danishefsky SJ.
Angew. Chem., Int. Ed. Engl.
1992,
31:
915
<A NAME="RD09402ST-2G">2g</A>
Benbow JW.
McClure KF.
Danishefsky SJ.
J. Am. Chem. Soc.
1993,
115:
12305
<A NAME="RD09402ST-2H">2h</A>
Kasai M.
Kono M.
Synlett
1992,
778
For recent approaches see for example:
<A NAME="RD09402ST-3A">3a</A>
Coleman RS.
Chen W.
Org. Lett.
2001,
3:
1141
<A NAME="RD09402ST-3B">3b</A>
Jones GB.
Guzel M.
Mathews JE.
Tetrahedron Lett.
2000,
41:
1123
<A NAME="RD09402ST-3C">3c</A>
Ziegler FE.
Berlin MY.
Tetrahedron
Lett.
1998,
39:
2455
<A NAME="RD09402ST-3D">3d</A>
Ziegler FE.
Berlin MY.
Lee K.
Looker AR.
Org.
Lett.
2000,
2:
3619
<A NAME="RD09402ST-3E">3e</A>
Dobbs AP.
Jones K.
Veal KT.
Tetrahedron
1998,
54:
2149
<A NAME="RD09402ST-3F">3f</A>
Brunton SA.
Jones K.
J. Chem. Soc.,
Perkin Trans. 1
2000,
763
<A NAME="RD09402ST-3G">3g</A>
Jones K.
Storey JMD.
J. Chem.
Soc., Perkin Trans. 1
2000,
769
<A NAME="RD09402ST-4A">4a</A>
He Q.-Y.
Maryendu H.
Tomasz M.
J. Am. Chem. Soc.
1994,
116:
9349
<A NAME="RD09402ST-4B">4b</A>
Kohn H.
Wang S.
Tetrahedron Lett.
1996,
37:
2337
<A NAME="RD09402ST-4C">4c</A>
Edstrom ED.
Yu T.
Tetrahedron
1997,
53:
4549
<A NAME="RD09402ST-5">5</A>
McCarroll AJ.
Walton JC.
J. Chem. Soc., Perkin
Trans. 1
2001,
3215
<A NAME="RD09402ST-6A">6a</A>
Baker SR.
Parsons AF.
Pons J.-F.
Wilson M.
Tetrahedron Lett.
1998,
39:
7197
<A NAME="RD09402ST-6B">6b</A>
Baker SR.
Burton KI.
Parsons AF.
Pons J.-F.
Wilson M.
J. Chem. Soc., Perkin Trans. 1
1999,
427
<A NAME="RD09402ST-7">7</A>
All new compounds exhibited satisfactory
spectral and analytical (high-resolution mass) data.
<A NAME="RD09402ST-8">8</A>
Tricycle 12: 1H
NMR (270 MHz, CDCl3): δ = 7.80 (1 H,
d, J = 8 Hz,
H-1 aromatic), 7.53-6.97 (8 H, m, aromatic), 4.26 (2 H,
q, J = 7 Hz,
CO2CH
2), 3.78 (1
H, dd, J = 11
and 4.5 Hz, CHCH
2CO2),
2.75 (1 H, dd, J = 17.5
and 11 Hz, CHCO2), 2.62-2.15
(5 H, m, CHCO2, NCOCH
2 and NCOCH2CH
2) and 1.32 (3 H, t, J = 7 Hz,
CO2CH2CH
3).
MS (CI, NH3): m/z (%) = 336
(100) [M + H+]. Found
(CI, NH3): 336.1598 [M + H+].
C21H21NO3 requires for [M + H+],
336.1600. Tricycle 13: 1H
NMR (270 MHz, CDCl3): δ = 9.02 (1 H,
d, J = 8.2
Hz, H-1 aromatic), 7.46-6.99 (8 H, m, aromatic), 4.36-4.26
(2 H, m, CO2CH
2),
3.03 (1 H, dd, J = 13.3
and 4.1 Hz, CHCHCO2), 2.89-2.30
(6 H, m, CHCHCO2,
NCOCH
2 and NCOCH2CH
2) and 1.36 (3 H, t, J = 7 Hz,
CO2CH2CH
3). MS
(CI, NH3): m/z (%) = 336
(100) [M + H+]. Found
(CI, NH3): [M + H+] 336.1599.
C21H21NO3 requires for [M + H+] 336.1600.
<A NAME="RD09402ST-9A">9a</A>
Kocián O.
Ferles M.
Collect.
Czech. Chem. Commun.
1978,
43:
1413
<A NAME="RD09402ST-9B">9b</A>
Speckamp WN.
de Boer JJJ.
Recl. Trav.
Chim. Pays-Bas
1983,
102:
410
<A NAME="RD09402ST-10">10</A>
Moehrle H.
Mehrens J.
Z. Naturforsch., B: Chem. Soc.
1998,
53:
1369
<A NAME="RD09402ST-11">11</A>
Easton CJ.
Pitt MJ.
Ward CM.
Tetrahedron
1995,
51:
12781
<A NAME="RD09402ST-12A">12a</A>
Robertson J.
Pillai J.
Lush RK.
Chem. Soc. Rev.
2001,
30:
94
<A NAME="RD09402ST-12B">12b</A>
Bogen S.
Fensterbank L.
Malacria M.
J. Org.
Chem.
1999,
64:
819
<A NAME="RD09402ST-12C">12c</A>
Wessig P.
Schwarz J.
Lindermann U.
Holthausen MC.
Synthesis
2001,
1258
<A NAME="RD09402ST-12D">12d</A>
Leardini R.
McNab H.
Minozzi M.
Nanni D.
Reed D.
Wright AG.
J. Chem. Soc., Perkin Trans. 1
2001,
2704
<A NAME="RD09402ST-13">13</A>
Wadsworth WS.
Emmons WD.
J. Am. Chem. Soc.
1961,
83:
1733
<A NAME="RD09402ST-14">14</A> For a related 5,5,6-tricycle see:
Wee AGH.
Liu B.
Zhang L.
J. Org. Chem.
1992,
57:
4404
<A NAME="RD09402ST-15">15</A>
5,5,6-Tricycle 21.
Diastereoisomer 1: 1H NMR (500 MHz, CDCl3): δ = 7.63
(1 H, d, J = 7.8
Hz, H-1 aromatic), 7.27-7.18 (2 H, m, aromatic), 7.05-7.01
(1 H, m, aromatic), 4.81-4.75 (1 H, m, NCH),
4.17 (2 H, q, J = 7.1
Hz, CO2CH
2), 3.74-3.69
(1 H, m, CHCH2CO2),
2.90-2.82 (1 H, m, NCOCH), 2.63-2.57
(2 H, m, CHCO2 and NCOCH), 2.43 (1 H, dd, J = 16.8
and 5.7 Hz, CHCO2), 2.19-2.14
(1 H, m, NCOCH2CH), 2.00-1.91
(1 H, m, NCOCH2CH) and 1.26
(3
H, t, J = 7
Hz, CO2CH2CH
3). 13C
NMR (75 MHz, CDCl3): δ = 171.6, 170.7
(NCO and CO2),
138.0, 137.0 (2 × C=CH aromatic),
128.4, 125.2, 124.3, 114.5 (4 × C=CH aromatic), 65.0 (NCH),
60.9 (CO2
CH2),
38.3 (CHCH2CO2),
36.4, 36.2 (CHCH2CO2 and
NCOCH2), 23.3 (CH2
CH2CH2), 14.2 (CO2CH2
CH3). MS (CI, NH3): m/z (%) = 260
(100) [M + H+]. Found
(CI, NH3): [M + H+] 260.1290.
C15H17NO3 requires for [M + H+] 260.1287.
Diastereoisomer 2: 1H NMR (500 MHz, CDCl3): δ = 7.61
(1 H, d, J = 7.8
Hz, H-1 aromatic), 7.41-7.04 (3 H, m, aromatic), 4.34-4.30
(1 H, m, NCH), 4.25-4.16 (2 H, m, CO2CH2),
3.60-3.55 (1 H, m, CHCH2CO2), 3.03
(1 H, dd, J = 16.4
and 4.4 Hz, CHCO2), 2.86-2.78 (1 H, m, NCOCH),
2.61-2.51 (3 H, m, CHCO2, NCOCH and NCOCH2CH),
2.15-2.06 (1 H, m, NCOCH2CH) and 1.30 (3 H,
t, J = 7 Hz,
CO2CH2CH3). 13C NMR
(75 MHz, CDCl3): δ = 171.8, 171.6 (NCO and CO2), 139.1,
136.3, 128.4, 124.4, 123.9, 115.0 (C=CH aromatic), 69.8 (NCH),
60.9 (CO2
CH2),
44.8 (CHCH2CO2),
37.8, 36.1 (CHCH2CO2 and
NCOCH2), 29.2 (CH2
CH2CH2), 14.4 (CO2CH2
CH3). MS (CI, NH3): m/z (%) = 260
(100) [M + H+]. Found
(CI, NH3): [M + H+] 260.1288.
C15H17NO3 requires for [M + H+] 260.1287.
5,6,6-Tricycle 22. 1H
NMR (270 MHz, CDCl3): δ = 8.70 (1 H,
d, J = 9.1
Hz, H-1 aromatic), 7.27-7.04 (3 H, m, aromatic), 4.26 (2
H, q, J = 7.2 Hz,
CO2CH
2), 4.07-3.97
(1 H, m, NCH), 3.14-3.09 (2
H, m, CHCHCO2 and CH2CHCO2), 2.74-2.33
(4 H, m, NCOCH
2, CHCHCO2 and NCOCH2CH), 1.93-1.77 (1 H, m, NCOCH2CH) and 1.32 (3 H, t, J = 7.2
Hz, CO2CH2CH
3). 13C
NMR (75 MHz, CDCl3): δ = 173.6,
172.6 (NCO and CO2),
136.0, 128.9, 127.4, 124.0, 123.9, 119.1 (C=CH aromatic), 61.2 (CO2
CH2), 58.9 (NCH),
45.4 (CHCO2), 31.9, 31.5 (NCOCH2 and CH2CHCO2),
24.0 (CH2
CH2CH2), 14.3
(CH2
CH3). Found
(CI, NH3): [M + H+] 260.1285. C15H17NO3 requires
for [M + H+] 260.1287.
<A NAME="RD09402ST-16">16</A>
The low yield (30%) for the
N-acylation/cyclisation reactions (to form the pyrrolidinone
ring) was due to the formation of an alkyne in 55% yield,
which resulted from dehydrobromination of vinyl bromide 24 by ethoxide.