Synlett 2002(10): 1561-1578
DOI: 10.1055/s-2002-34228
ACCOUNT
© Georg Thieme Verlag Stuttgart · New York

Tropos or Atropos? That is the Question!

Koichi Mikami*, Kohsuke Aikawa, Yukinori Yusa, Jonathan J. Jodry, Masahiro Yamanaka
Department of Applied Chemistry, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552, Japan
Fax: +81(3)57342776; e-Mail: [email protected];
Further Information

Publication History

Received 8 February 2002
Publication Date:
23 September 2002 (online)

Abstract

While non-racemic catalysts can generate non-racemic products with or without the non-linear relationship in enantiomeric excesses between catalysts and products, racemic catalysts inherently give only a racemic mixture of chiral products. Racemic catalysts can be enantioselectively evolved into highly activated catalysts by association with chiral activators. Asymmetric activation strategy can produce greater enantiomeric excess in the products, even when using a catalytic amount of chiral activator per chiral or racemic catalysts bearing atropisomeric (atropos: from Greek a meaning not, and tropos meaning turn) ligands, than the enantioselectivity attained by the enantiomerically pure catalyst on its own. Some recent applications of the asymmetric activation catalysis that employ not only atropos and racemic ligands but also tropos ligands without enantiomeric resolution are herein reported. The great success of the asymmetric catalysts with tropos ligands clearly illustrate that chirally rigid atropos ligands can be replaced by chirally flexible tropos ligands to give preferentially the thermodynamically favorable diastereomer of catalysts with higher chiral efficiency than does the minor isomer. The asymmetric activation concept now progress toward the use of racemic but tropos ligands rather than the use of atropos ones.

1 Prologue: Tropos or Atropos? That is the Question!

2 Asymmetric Activation of Atropos and Racemic
Catalysts

2.1 Carbon-Carbon Bond Forming (Ene, Aldol, and
Diels-Alder) Reactions

2.2 Hydrogenation

3 Asymmetric Activation of Racemic but Tropos Catalysts

3.1 Biphenol (BIPOL)

3.2 Biphenylphosphine (BIPHEP)

3.3 Bis(diphenylphosphino)ferrocene (DPPF)

3.4 Hydrogenation

3.5 Carbon-Carbon Bond Forming (Diels-Alder and Ene)
Reactions

3.6 Tropos vs. Atropos Nature of BIPHEP-Metal Catalysts

4 Epilogue: Tropos rather than Atropos! That is an Answer!

    References

  • 1a Gawley RE. Aube J. Principles of Asymmetric Synthesis   Pergamon; London: 1996. 
  • 1b Advances in Catalytic Processes   Vol. 1:  Doyle MP. JAI Press; London: 1995. 
  • 1c Noyori R. Asymmetric Catalysis in Organic Synthesis   Wiley; New York: 1994. 
  • 1d Brunner H. Zettlmeier W. Handbook of Enantioselective Catalysis   VCH; Weinheim: 1993. 
  • 1e Catalytic Asymmetric Synthesis   Ojima I. VCH; New York: 1993. 
  • 1f Kagan HB. Comprehensive Organic Chemistry   Vol. 8:  Pergamon; Oxford: 1992. 
  • 1g Asymmetric Catalysis   Bosnich B. Martinus Nijhoff Publishers; Dordrecht: 1986. 
  • 2 Kuhn R. Molekulare Asymmetrie in Stereochemie   Freuberg H. Franz, Deutike; Leipzig-Wien: 1933.  p.803 
  • 3 Haworth WH. The Constitution of the Sugars   Edward Arnold & C.; London: 1929.  p.90 
  • 4a Kemp JD. Pitzer KS. J. Chem. Phys.  1936,  4:  749 
  • 4b Kemp JD. Pitzer KS. J. Am. Chem. Soc.  1937,  59:  276 
  • 5 Christie GH. Kenner J. J. Chem. Soc.  1922,  121:  614 
  • 6a Oki M. Yamamoto G. Bull. Chem. Soc. Jpn.  1971,  44:  266 
  • 6b Oki M. Top. Stereochem.  1983,  14:  1 
  • 7a Pople JA. Schneider WG. Bernstein HJ. High Resolution Nuclear Magnetic Resonance   McGraw-Hill; New York: 1959.  p.218 
  • 7b Binsch G. Band-Shape Analysis in Dynamic Nuclear Magnetic Resonance Spectroscopy   Jackman LM. Cotton FA. Academic Press; New York: 1975.  p.45-81 
  • 7c Binsch G. Top Stereochem.  1968,  3:  97 
  • 8 Eliel EL. Wilen SH. Stereochemistry of Organic Compounds   Chap.14-15:  Wiley; New York: 1994. 
  • 9 Ahmed SR. Hall DM. J. Chem. Soc.  1959,  3383 
  • 10 Iffland DC. Siegel H. J. Am. Chem. Soc.  1958,  80:  1947 
  • Reviews:
  • 11a Berrisford DJ. Bolm C. Sharpless KB. Angew. Chem., Int. Ed. Engl.  1995,  34:  1059 
  • 11b Jacobsen EN. Marko I. France MB. Svendsen JS. Sharpless KB. J. Am. Chem. Soc.  1989,  111:  737 
  • 11c Jacobsen EN. Marko I. France MB. Svendsen JS. Sharpless KB. J. Am. Chem. Soc.  1988,  110:  1968 
  • 12 Review: Mikami K. Terada M. Korenaga T. Matsumoto Y. Ueki M. Angelaud R. Angew. Chem. Int. Ed.  2000,  39:  3532 
  • 13a Blaser H.-U. Müller M. Enantioselective Catalysis by Chiral Solids: Approaches and Results, In Heterogeneous Catalysis and Fine Chemicals II   Guisnet M. Barrault J. Bouchoule C. Duprez D. Perot G. Maurel M. Montassier C. Elsevier; Amsterdam: 1991. 
  • 13b Blaser H.-U. Tetrahedron: Asymmetry  1991,  2:  843 
  • 13c Garland M. Blaser HU. J. Am. Chem. Soc.  1990,  112:  7048 
  • 13d Margitfalvi JL. Marti P. Baiker A. Botz L. Sticher O. Catal. Lett.  1990,  6:  281 
  • 14a Alcock NW. Brown JM. Maddox PJ. J. Chem. Soc., Chem. Commun.  1986,  1532 
  • 14b Brown JM. Maddox PJ. Chirality  1991,  3:  345 
  • 14c Maruoka K. Yamamoto H. J. Am. Chem. Soc.  1989,  111:  789 
  • 14d Faller JW. Parr J. J. Am. Chem. Soc.  1993,  115:  804 
  • 14e Faller JW. Tokunaga M. Tetrahedron Lett.  1993,  34:  7359 
  • 14f Faller JW. Liu Sams X. J. Am. Chem. Soc.  1996,  118:  1217 
  • 14g Sablong R. Osborn JA. Faller JW. J. Organomet. Chem.  1997,  527:  65 
  • 15 Mikami K. Matsukawa S. Nature (London)  1997,  385:  613 
  • 16 Matsukawa S. Mikami K. Tetrahedron: Asymmetry  1997,  8:  815 
  • 17 Matsukawa S. Mikami K. Enantiomer  1996,  1:  69 
  • Reviews:
  • 18a Mikami K. Nakai T. Catalytic Asymmetric Synthesis   2nd Ed.:  Ojima I. Wiley-VCH; Weinheim: 2000.  p.543 
  • 18b Mikami K. Terada M. Comprehensive Asymmetric Catalysis   Jacobsen EN. Pfaltz A. Yamamoto H. Springer; Heidelberg: 1999.  p.1143 
  • 18c Mikami K. Shimizu M. Chem. Rev.  1992,  92:  1021 
  • 18d Mikami K. Terada M. Shimizu M. Nakai T. J. Symp. Org. Chem. Jpn.  1990,  48:  292 
  • 19a Ohkuma T. Ooka H. Hashiguchi S. Ikariya T. Noyori R. J. Am. Chem. Soc.  1995,  117:  2675 
  • 19b Ohkuma T. Ooka H. Ikariya T. Noyori R. J. Am. Chem. Soc.  1995,  117:  10417 
  • 19c Ohkuma T. Ooka H. Yamakawa M. Ikariya T. Noyori R. J. Org. Chem.  1996,  61:  4872 
  • 19d Ohkuma T. Ikehira H. Ikariya T. Noyori R. Synlett  1997,  467 
  • 19e Doucet H. Ohkuma T. Murata K. Yokozawa T. Kozawa M. Katayama E. England AF. Ikariya T. Noyori R. Angew. Chem. Int. Ed.  1998,  37:  1703 
  • 20a Ohkuma T. Doucet H. Pham T. Mikami K. Korenaga T. Terada M. Noyori R. J. Am. Chem. Soc.  1998,  120:  1086 
  • 20b Mikami K. Korenaga T. Matsumoto Y. Ueki M. Terada M. Matsukawa S. Pure Appl. Chem.  2001,  73:  255 
  • 23 Noyori R. Ohkuma T. Kitamura M. Takaya H. Sayo N. Kumobayashi H. Akutagawa S. J. Am. Chem. Soc.  1987,  109:  5856 
  • The real catalyst has been suggested to be a mono- or dihydride species (X = H or Cl):
  • 24a Chowdhury RL. Bäckvall J.-E. J. Chem. Soc., Chem. Commun.  1991,  1063 
  • 24b Haack K.-J. Hashiguchi S. Fujii A. Ikariya T. Noyori R. Angew. Chem., Int. Ed. Engl.  1997,  36:  285 
  • 24c Noyori R. Hashiguchi S. Acc. Chem. Res.  1997,  30:  97 
  • 24d Abdur-Rashid K. Lough AJ. Morris RH. Organometallics  2000,  19:  2655 
  • 24e Abdur-Rashid K. Faatz M. Lough AJ. Morris RH. J. Am. Chem. Soc.  2001,  123:  7473 
  • 24f Hartmann R. Chen P. Angew. Chem. Int. Ed.  2001,  40:  3581 
  • 25 Mikami K. Korenaga T. Ohkuma T. Noyori R. Angew. Chem. Int. Ed.  2000,  39:  3707 
  • 26 Mikami K. Matsukawa S. Volk T. Terada M. Angew. Chem., Int. Ed. Engl.  1997,  36:  2768 
  • 27 Chavarot M. Byrne JJ. Chavant PY. Pardillos-Guindet J. Vallee Y. Tetrahedron: Asymmetry  1998,  9:  3889 
  • 28 Ueki M. Matsumoto Y. Jodry JJ. Mikami K. Synlett  2001,  1889 
  • BIPHEP [(2,2′-bis(diphenylphosphino)-1,1′-biphenyl]: This ligand was also named BPBP, but contrarily to what was claimed in the publication, it was unsuccessfully synthesized to give instead the monophosphine derivative:
  • 29a Uehara A. Bailar JC. J. Organomet. Chem.  1982,  239:  1 
  • 29b Bennett MA. Bhargava SK. Griffiths KD. Robertson GB. Angew. Chem., Int. Ed. Engl.  1987,  26:  260 
  • 29c Desponds O. Schlosser M. J. Organomet. Chem.  1996,  507:  257 
  • 29d Desponds O. Schlosser M. Tetrahedron Lett.  1996,  37:  47 
  • For more details see:
  • 30a ‘BIPHEMP’ (2,2′-bis(diphenylphosphanyl)-6,6′-dimethyl- 1,1′-biphenyl): Svensson G. Albertsson J. Frejd T. Klingstedt T. Acta Crystallogr., Sect. C  1986,  42:  1324 
  • 30b See also: Schmid R. Cereghetti M. Heiser B. Schonholzer P. Hansen H.-J. Helv. Chim. Acta  1988,  71:  897 
  • 30c ‘BICHEPs’[2,2′-bis(dicyclohexylphosphanyl)-6,6′-dimethyl-1,1′-biphenyl]: Chiba T. Miyashita A. Nohira H. Tetrahedron Lett.  1991,  32:  4745 
  • 30d ‘MeO-BIPHEP’ [2,2′-bis(diphenyl-phosphanyl)-6,6′-dimethoxy-1,1′-biphenyl]: Schmid R. Foricher J. Cereghetti M. Schönholzer P. Helv. Chim. Acta  1991,  74:  370 
  • 30e See also: Schmid R. Broger EA. Cereghetti M. Crameri Y. Foricher J. Lalonde M. Müller RK. Scalone M. Schoettel G. Zutter U. Pure Appl. Chem.  1996,  68:  131 
  • 30f See further: Trabesinger G. Albinati A. Feiken N. Kunz RW. Pregosin PS. Tschoerner M. J. Am. Chem. Soc.  1997,  119:  6315 
  • 30g 2,2′-bis(diphenylphosphanyl)-6,6′-difluoro-1,1′-biphenyl: Jendralla H. Li C.-H. Paulus E. Tetrahedron: Asymmetry  1994,  5:  1297 
  • 31 Mikami K. Korenaga T. Terada M. Ohkuma T. Pham T. Noyori R. Angew. Chem. Int. Ed.  1999,  38:  495 
  • 32 Mikami K. Aikawa K. Yusa Y. Org. Lett.  2002,  4:  95 
  • 33 Mikami K. Aikawa K. Yusa Y. Hatano M. Org. Lett.  2002,  4:  91 
  • 34a Ferrocenes   Togni A. Hayashi T. VCH; Weinheim: 1995. 
  • 34b Richards CJ. Locke AJ. Tetrahedron: Asymmetry  1998,  9:  2377 
  • 35 Hayashi T. Ohno A. Lu S. Matsumoto Y. Fukuyo E. Yanagi K. J. Am. Chem. Soc.  1994,  116:  4421 
  • 36 Kanemasa S. Oderanotoshi Y. Sakaguchi S. Yamamoto H. Tanaka J. Wada E. Curran DP. J. Am. Chem. Soc.  1998,  120:  3074 
  • 38 Mikami K. Aikawa K. Org. Lett.  2002,  4:  99 
  • 39a Johannsen M. Jørgensen KA. J. Org. Chem.  1995,  60:  5757 
  • 39b Johannsen M. Jørgensen KA. Tetrahedron  1996,  52:  7321 
  • 39c Oi S. Kashiwagi K. Terada E. Ohuchi K. Inoue Y. Tetrahedron Lett.  1996,  37:  6351 
  • 39d Oi S. Terada E. Ohuchi K. Kato T. Tachibana Y. Inoue Y. J. Org. Chem.  1999,  64:  8660 
  • 40a Maseras F. Morokuma K. J. Comp. Chem.  1995,  16:  1170 
  • 40b Svensson M. Humbel S. Froese RDJ. Matsubara T. Sieber S. Morokuma K. J. Phys. Chem.  1996,  100:  19357 
  • 40c Dapprich S. Komaromi I. Byun KS. Morokuma K. Frisch MJ. J. Mol. Struct. (THEOCHEM)  1999,  461-462:  1 
  • 40d Vreven T. Morokuma K. J. Comput. Chem.  2000,  21:  1419 
  • 42 Korenaga T. Aikawa K. Terada M. Kawauchi S. Mikami K. Adv. Synth. Catal.  2001,  343:  284 
  • 43 Desponds O. Schlosser M. Tetrahedron Lett.  1996,  37:  47 
  • 45a Bott G. Field LD. Sternhell S. J. Am. Chem. Soc.  1980,  102:  5618 
  • 45b Rousel C. Liden A. Chanon M. Metzger J. Sandstrom J. J. Am. Chem. Soc.  1976,  98:  2847 
  • 45c Nilsson B. Martinson P. Olsson K. Carter RE. J. Am. Chem. Soc.  1974,  96:  3190 
  • 46a Morokuma K. Acc. Chem. Res.  1977,  10:  294 
  • 46b Kitaura K. Morokuma K. Int. J. Quantum Chem.  1976,  10:  325 
  • 47 Reed AE. Curtiss LA. Weinhold F. Chem. Rev.  1988,  88:  899 
  • Tropos catalysts with biphenyl chirality, see:
  • 48a Ringwald M. Sturmer R. Brintzinger HH. J. Am. Chem. Soc.  1999,  121:  1524 
  • 48b Chen W. Xiao J. Tetrahedron Lett.  2001,  42:  8737 
  • 48c Becker JJ. White PS. Gagne MR. J. Am. Chem. Soc.  2001,  123:  9478 
  • 48d Hashihara T. Ito Y. Katsuki T. Synlett  1996,  1079 
  • 48e Hashihara T. Ito Y. Katsuki T. Tetrahedron  1997,  53:  9541 
  • 48f Miura K. Katsuki T. Synlett  1999,  783 
  • 48g Pritchett S. Walsh PJ. J. Am. Chem. Soc.  1998,  120:  6423 
  • 48h Balsells J. Walsch PJ. J. Am. Chem. Soc.  2000,  122:  1802 
  • 48i Balsells J. Betancort JM. Walsch PJ. Angew. Chem. Int. Ed.  2000,  39:  3428 
21

See ref. [14] Amounts of chiral poisons: 2.0 equiv for Al, 1.4 equiv for Rh, 20 equiv for Ru, 3.0 equiv for Ti, and 2.0 equiv for Ir.

22

Mikami, K.; Yusa, Y.; Korenaga, T. Org. Lett. in press.

37

Configuration of the dppf chirality is denoted by using the descriptors of chirality: (P), plus, clockwise and (M), minus, anticlockwise.

41

Geometry optimization was performed with Gaussian 98. Computational details, see: Yamanaka, M.; Mikami, K. submitted.

44

Epimerisation of (R)-RuCl2(XylBIPHEP)/(S,S)-DPEN to (S)-RuCl2(XylBIPHEP)/(S,S)-DPEN was very slow at room temperature in CD2Cl2, but accelerated in 2-propanol to give a 3:1 ratio of diastereomeric complexes within 2-3 hours (see ref. [28] ).