Semin Hear 2002; 23(3): 209-214
DOI: 10.1055/s-2002-34458
Copyright © 2002 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Auditory Neuropathy/Dys-Synchrony: After the Diagnosis, then What?

Charles I. Berlin, Li Li, Linda J. Hood, Thierry Morlet, Kelly Rose, Shanda Brashears
  • Kresge Hearing Research Laboratory, Department of Otolaryngology and Biocommunication, Louisiana State University Health Sciences Center, New Orleans, Louisiana
Further Information

Publication History

Publication Date:
02 October 2002 (online)


Neither auditory brainstem response (ABR) nor otoacoustic emissions (OAEs) are objective hearing tests, nor are their results always mutually consistent in any one patient. Therefore, it is quite possible for a patient to have normal emissions but absent or grossly abnormal ABR and behavioral audiograms that are inconsistent with either test. These patients, who may constitute as much as 10% of the diagnosed deaf population, are the subject of this article. To diagnose as many as possible properly from the onset, we urge triage (sorting or preselection by a system of priorities designed to maximize the effectiveness of treatment or outcome) using (1) tympanometry, (2) middle ear muscle reflexes, and (3) OAEs. Early diagnosis is essential because after either hearing aid use or the passage of time these patients often lose their OAEs and become almost indistinguishable from patients with ordinary deafness. Because auditory verbal therapy and hearing aids are rarely if ever successful with these patients until after cochlear implantation, it is essential to design intervention and interpret their audiograms physiologically rather than in conventional articulation index terms. This article offers management suggestions based on our experiences with close to 200 patients and their families. These suggestions include cued speech and baby signs for newborns. Cued speech gives them access to their parents' vocabulary and language, and the baby signs give them vocabulary to express needs and wants and remain linguistically attached. Then, if they are among the 93% of children who stay impaired, we have seen that cochlear implants are quite effective.


  • 1 Hirsh I J. The influence of interaural phase on interaural summation and inhibition.  J Acoust Soc Am . 1948;  20 536-544
  • 2 Licklider J CR. Influence of interaural phase relations upon the masking of speech by white noise.  J Acoust Soc Am . 1948;  20 150-159
  • 3 Berlin C I, Hood L J, Cecola R P, Jackson D F, Szabo P. Does type I afferent neuron dysfunction reveal itself through lack of efferent suppression?.  Hear Res . 1993;  65 40-50
  • 4 Starr A, Picton T W, Sininger Y, Hood L J, Berlin C I. Auditory neuropathy.  Brain . 1996;  119 741-53
  • 5 Berlin C I, Taylor-Jeanfreau J A, Hood L J, Morlet T, Keats B J. Managing and renaming auditory neuropathy (AN) as part of a continuum of auditory dys-synchrony (AD).  ARO Abstr . 2001;  24 137
  • 6 Berlin C, Hood L, Rose K. On renaming auditory neuropathy as auditory dys-synchrony.  Audiol Today . 2001;  13 15-17
  • 7 Zeng F G, Oba S, Garde S, Sininger Y, Starr A. Temporal and speech processing deficits in auditory neuropathy.  Neuroreport . 1999;  10 3429-3435
  • 8 Kraus N, Bradlow A R, Cheatham M A. Consequences of neural asynchrony: a case of auditory neuropathy.  J Assoc Res Otolaryngol . 2000;  1 33-45
  • 9 Shallop J K, Peterson A, Facer G W, Fabry L B, Driscoll C L. Cochlear implants in five cases of auditory neuropathy: postoperative findings and progress.  Laryngoscope . 2001;  111 555-562
  • 10 Berlin C I, Bordelon J, St John P. Reversing click polarity may uncover auditory neuropathy in infants.  Ear Hear . 1998;  19 37-47
  • 11 Berlin C I, Wexler K F, Jerger J F, Halperin H R, Smith S. Superior ultra-audiometric hearing: a new type of hearing loss which correlates highly with unusually good speech in the ``profoundly deaf''.  Otolaryngology . 1978;  86 111-116
  • 12 Galambos R. Suppression of auditory nerve activity by stimulation of efferent fibers to cochlea.  J Neurophysiol . 1956;  19 424-437
  • 13 Worthington D W, Peters J F. Quantifiable hearing and no ABR: paradox or error?.  Ear Hear . 1980;  1 281-285
  • 14 Kraus N, Ozdamar O, Stein L, Reed N. Absent auditory brain stem response: Peripheral hearing loss or brain stem dysfunction?.  Laryngoscope . 1984;  94 400-406
  • 15 Soliman S, Mostafa M, Kamal N, Raafat M, Hazzaa N. Auditory evoked potentials in epileptic patients.  Ear Hear . 1993;  14 235-241
  • 16 Deltenre P, Mansbach A L, Bozet C. Auditory neuropathy with preserved cochlear microphonics and secondary loss of otoacoustic emissions.  Audiology . 1999;  38 187-195
  • 17 Berlin C I, Hood L J, Cecola R P, Jackson D F, Szabo P. Does type I afferent neuron dysfunction reveal itself through lack of efferent suppression?.  Hear Res . 1993;  65 40-50
  • 18 Starr A, Sininger Y, Winter M. Transient deafness due to temperature-sensitive auditory neuropathy.  Ear Hear . 1998;  19 169-179
  • 19 Stapells D R. Threshold estimation by the tone-evoked auditory brainstem response: a literature meta-analysis.  Rev Orthophonie Audiol . 2000;  24 74-83
  • 20 Sininger Y S. Auditory brainstem response for objective measures of hearing.  Ear Hear . 1993;  14 23-30
  • 21 Norton S J, Gorga M P, Widen J E. Identification of neonatal hearing impairment: evaluation of transient evoked otoacoustic emission, distortion product otoacoustic emission, and auditory brain stem response test performance.  Ear Hear . 2000;  21 508-528
  • 22 Berlin C, Hood L, Morlet T. The search for auditory neuropathy patients and connexin 26 patients in schools for the deaf.  ARO Abstr . 2000;  23 23