References
<A NAME="RD19002ST-1A">1a</A>
The Chemistry and Biology of Isoquinoline Alkaloids
Philipson JD.
Roberts MF.
Zenk MH.
Springer-Verlag;
Berlin:
1985.
<A NAME="RD19002ST-1B">1b</A> For a recent example see:
Iwasa K.
Moriyasu M.
Tachibana Y.
Kim H.-S.
Wataya Y.
Wiegrebe W.
Bastow KF.
Cosentino LM.
Kozuka M.
Lee K.-H.
Bioorg.
Med. Chem.
2001,
9:
2871
<A NAME="RD19002ST-2">2</A>
Bringmann G.
Pokorny F. In
The
Alkaloids. Chemistry and Pharmacology
Vol. 46:
Cordell GA.
Academic Press;
San
Diego:
1995.
Chap. 4.
p.127-271
Some recent representative syntheses
and references therein:
<A NAME="RD19002ST-3A">3a</A>
Bringmann G.
Götz R.
Keller PA.
Walter R.
Boyd MR.
Lang F.
Garcia A.
Walsh JJ.
Tellitu I.
Bhaskar KV.
Kelly TR.
J.
Org. Chem.
1998,
63:
1090
<A NAME="RD19002ST-3B">3b</A>
Hobbs PD.
Upender V.
Dawson MI.
Synlett
1997,
965
<A NAME="RD19002ST-3C">3c</A>
Hoye TR.
Chen M.
Mi L.
Priest OP.
J. Org. Chem.
1999,
64:
7184
<A NAME="RD19002ST-3D">3d</A>
Lipshutz BH.
Keith JM.
Angew
Chem. Int. Ed.
1999,
38:
3530
<A NAME="RD19002ST-3E">3e</A>
Rizzacasa MA.
Sargent MV.
J.
Chem. Soc., Perkin Trans. 1
1991,
2773
Some recent examples from groups
working in the area:
<A NAME="RD19002ST-4A">4a</A>
Bringmann G.
Wenzel M.
Kelly TR.
Boyd MR.
Gulakowski RJ.
Kaminsky R.
Tetrahedron
1999,
55:
1731
<A NAME="RD19002ST-4B">4b</A>
Bringmann G.
Holenz J.
Weirich R.
Rübenacker M.
Funke C.
Boyd MR.
Gulakowski RJ.
François G.
Tetrahedron
1998,
54:
497
<A NAME="RD19002ST-4C">4c</A>
Bringmann G.
Saeb W.
Kraus J.
Brun R.
François G.
Tetrahedron
2000,
56:
3523
<A NAME="RD19002ST-4D">4d</A>
Bringmann G.
Tasler S.
Tetrahedron
2001,
57:
331
<A NAME="RD19002ST-4E">4e</A>
Rao AVR.
Gurjar MK.
Ramana DV.
Chheda AK.
Heterocycles
1996,
43:
1
<A NAME="RD19002ST-4F">4f</A>
Zhang H.
Zembower DE.
Chen Z.
Bioorg.
Med. Chem. Lett.
1997,
7:
2687
<A NAME="RD19002ST-4G">4g</A>
Upender V.
Pollart DJ.
Liu J.
Hobbs PD.
Olsen C.
Chao W.-R.
Bowden B.
Crase JL.
Thomas DW.
Pandey A.
Lawson JA.
Dawson MI.
J.
Hetero-cycl. Chem.
1996,
33:
1371
<A NAME="RD19002ST-4H">4h</A>
de Koning CB.
Michael JP.
van
Otterlo WAL.
Tetrahedron
Lett.
1999,
40:
3037
<A NAME="RD19002ST-4I">4i</A>
de Koning CB.
Michael JP.
van
Otterlo WAL.
J. Chem. Soc.,
Perkin Trans. 1
2000,
799
<A NAME="RD19002ST-5A">5a</A>
Bringmann G.
Weirich R.
Reuscher H.
Jansen JR.
Kinzinger L.
Ortmann T.
Liebigs
Ann. Chem.
1993,
877
<A NAME="RD19002ST-5B">5b</A>
Hoye TR.
Chen M.
Tetrahedron
Lett.
1996,
37:
3099
<A NAME="RD19002ST-5C">5c</A>
Watanabe T.
Uemura M.
Chem. Commun.
1998,
871
<A NAME="RD19002ST-6">6</A>
Bringmann G.
Götz R.
Harmsen S.
Holenz J.
Walter R.
Liebigs
Ann. Chem.
1996,
2045
<A NAME="RD19002ST-7">7</A>
Toda J.
Matsumoto S.
Saitoh T.
Sano T.
Chem.
Pharm. Bull.
2000,
48:
91
<A NAME="RD19002ST-8">8</A>
This work is taken from the PhD thesis
of W. A. L. van Otterlo, University of the Witwatersrand, 1999.
<A NAME="RD19002ST-9A">9a</A>
Kametani T. In
The
Total Synthesis of Natural Products
Vol. 3:
ApSimon J.
John Wiley and
Sons, Inc.;
New York:
1977.
p.1-272
<A NAME="RD19002ST-9B">9b</A>
Rozwadowska MD.
Heterocycles
1994,
39:
903
<A NAME="RD19002ST-10A">10a</A>
Mitsunobu O.
Wada M.
Sano T.
J. Am. Chem. Soc.
1972,
94:
679
<A NAME="RD19002ST-10B">10b</A> A review:
Mitsunobu O.
Synthesis
1981,
1
<A NAME="RD19002ST-10C">10c</A> See also:
Hughes DL.
Org. React.
1992,
42:
335
<A NAME="RD19002ST-11">11</A>
Wolfe S.
Hasan SK.
Can. J. Chem.
1970,
48:
3572
<A NAME="RD19002ST-12">12</A>
Spectroscopic
Data for 4. 1H NMR (400 MHz; CDCl3): δ = 7.47-7.26
(5 H, m, 5 × PhH), 6.79 (1 H, br d, J = 9.3
Hz, NH), 6.49 (1 H, s, 5-H), 6.01-5.93 (1 H, m, 2′-H),
5.46-5.42 (1 H, m, CHCH3),
5.02-4.85 (2 H, m, 3′-H), 4.91 (1 H, d,
J = 10.8 Hz, OCH2),
4.86 (1 H, d, J = 10.8, OCH2),
3.90 (3 H, s, OCH3), 3.87 (3 H, s, OCH3),
3.64-3.63 (2 H, m, 1′-H), 1.92 (3 H, s, COCH3),
1.40 (3 H, d, J = 6.9 Hz, CHCH
3). 13C NMR
(100.63 MHz; CDCl3): δ = 168.4 (C=O),
154.4, 152.1, 140.2 (3 × ArC-O), 137.9 (ArC-C),
136.9 (2′-C), 132.5 (ArC-C), 128.2, 127.8,
127.6 (3 × PhC), 122.2 (ArC-C), 115.4 (3¢-C),
96.2 (5-C), 74.9 (OCH2), 55.9, 55.6 (2 × OCH3),
43.7 (CHCH3), 30.7 (1′-C),
23.6 (COCH3), 20.9 (CHCH3). IR (thin film): νmax = 3331
br (N-H st), 2876 m (C-H st, O-CH2),
2837 m (C-H st, O-CH3), 1637 vs (C=O st),
1597 (ArC=C st) cm-1; MS (EI): m/z = M+ 369.1933 (C22H27NO4 requires
369.1940), 369 (M+, 14%) 326(1), 278(77),
219(86) 204(16), 193(84), 189(16), 91(40), 43(16).
<A NAME="RD19002ST-13">13</A>
Kometani T.
Takeuchi Y.
Yoshii E.
J.
Chem. Soc., Perkin Trans. 1
1981,
1197
<A NAME="RD19002ST-14A">14a</A>
Larock RC. In Solvomercuration/Demercuration Reactions
in Organic Synthesis
Springer-Verlag;
Berlin:
1986.
Chap.
VI.
p.443-521
<A NAME="RD19002ST-14B">14b</A>
Larock RC. In
Comprehensive Organometallic
Chemistry II
Vol. 11:
McKillop A.
Elsevier
Science Ltd.;
Amsterdam:
1995.
Chap.
9.
p.389-459
<A NAME="RD19002ST-14C">14c</A>
Wilson SR.
Sawicki RA.
J.
Org. Chem.
1979,
44:
330
<A NAME="RD19002ST-14D">14d</A>
Barluenga J.
Jimènez C.
Nájera C.
Yus M.
J. Chem. Soc.,
Chem. Commun.
1981,
670
<A NAME="RD19002ST-14E">14e</A>
Takahata H.
Bandoh H.
Momose T.
Heterocyles
1995,
41:
1797
<A NAME="RD19002ST-15">15</A> For a related example using PhSeCl
see:
Clive DCL.
Farina V.
Singh A.
Wong CK.
Kiel WA.
Menchen SM.
J. Org. Chem.
1980,
45:
2120
<A NAME="RD19002ST-16">16</A>
Hg(OAc)2 (0.27 g, 0.85
mmol, 1.5 mol equiv) was added to amide 4 (0.19
g, 0.51 mmol) dissolved in THF (10 cm3). The yellow
mixture was then stirred, in the dark, under argon for 21 h at 25 ºC.
A further portion of Hg(OAc)2 (0.18 g, 0.51 mmol, 1 mol
equiv) was added and the mixture was stirred for a further 18 h.
A mixture of NaBH4 (0.049 g, 1.3 mmol, 2.5 mol equiv)
in aq NaOH (5 cm3, 2.5 M) was then added whilst
stirring. After stirring for a further 1 h a sat. aq Na2CO3 solution
(5 cm3) was added and the mixture was stirred
for 20 min. The reaction was allowed to stand for 30 min and the
THF was removed under reduced pressure. Sat. brine solution (10
cm3) and Et2O (10 cm3)
were added and the mixture was extracted with diethyl ether (3 × 10
cm3). The organic extracts were combined, filtered
through alu-mina to remove traces of Hg, dried (MgSO4)
and evaporated in vacuo. Preparative layer chromatography on silica
gel (EtOAc-hexane-aq NH4OH, 66:33:1)
afforded the 1,3-trans-dimethyl cyclized
product 3 (0.11 g, 56%) as a light yellow
oil.
<A NAME="RD19002ST-17">17</A>
The product 3 showed
two distinct sets of signals in its 1H NMR spectrum,
indicating rotamers about the amide C-N bond. Spectroscopic Data for 3. 1H
NMR (400 MHz; CDCl3): δ = 7.43-7.32
(10 H, m, 10 × PhH), 6.44 (1 H, s,
7-H), 6.43
(1 H, s, 7-H), 5.50 (1 H, q, J = 6.4
Hz, 1-H), 5.16 (1 H, q, J = 6.6
Hz, 1-H), 4.95-4.86 (4 H, m, 2 × OCH2), 4.68-4.62
(1 H, m, 3-H), 4.23-4.15 (1 H, m, 3-H), 3.91 (6 H, s, 2 × OCH3),
3.86 (3 H, s, OCH3), 3.82 (3 H, s, OCH3),
2.99 (2 H, dd, J = 15.2 and
2.4 Hz, 4-H pseudo-equatorial), 2.64-2.54
(2 H, m, 2 × 4-H pseudo-axial),
2.24 (3 H, s, COCH3), 2.17 (3 H, s, COCH3),
1.28 (6 H, d, J = 6.6 Hz, 2 × 1-CH3), 0.84
(3 H, d, J = 6.2 Hz, 3-CH3),
0.83 (3 H, d, J = 6.1 Hz,
3-CH3); 13C
NMR (50.32 MHz; CDCl3): δ = 170.0,
169.7 (2 × NCOCH3),
151.9, 151.5, 151.4, 150.7, 138.9, 139.0 (6 × ArC-O),
137.6, 137.5, 129.0 (3 × ArC-C), 128.5, 128.5, 128.3,
128.0 (4 × PhC), 119.5, 118.6 (2 × ArC-C),
95.2, 94.9 (2 × 7-C), 75.2 (OCH2), 55.9, 55.6,
55.6 (3 × OCH3), 49.1, 46.7 (2 × 1-C),
46.3, 44.4 (2 × 3-C), 28.6, 27.8 (2 × 4-C), 23.3,
22.3, 22.3, 21.3, 20.9, 19.2 (6 × CH3). IR (thin
film): νmax = 2820 m (C-H
st, OCH3), 1635 vs (C=O st), 1583 m (ArC = C
st) cm-1; MS (EI): m/z = M+ 369.1931
(C22H27NO4 requires 369.1940),
369 (M+, 20%) 354(83), 278(95), 263(9),
219(78), 193(100), 91(34), 43(16).
Heating compound 3 in an NMR tube in toluene-d
8 up to 90 °C
resulted in coalescence of the two sets of signals. Characteristic
chemical shifts in the 1H NMR spectrum: δ = 2.99
ppm (doublet of doublets, J = 15.2
and 2.4 Hz) and δ = 2.64-2.54 ppm (multiplet)
for the pseudo-equatorial and pseudo-axial protons at C-4 respectively.
Four sets of signals corresponding to the two protons at C-1 and
C-3 were also clearly visible as quartets at δ = 5.50
(J = 6.4 Hz) and 5.16
(J = 6.6 Hz) ppm and as multiplets
at δ = 4.68-4.62 and 4.23-4.15
ppm respectively. The 13C NMR spectrum
also showed two characteristic sets of resonances: at δ = 49.1
and 46.7 (C-1) ppm, δ = 46.3 and 44.4 (C-3) ppm
and δ = 28.6 and 27.8 (C-4) ppm.
<A NAME="RD19002ST-18">18</A> Example of rotational isomers in
tetrahydroisoquinolines due to N-acetyl
and N-formyl substituents:
Bringmann G.
Holenz J.
Wiesen B.
Nugroho BW.
Proksch P.
J. Nat. Prod.
1997,
60:
342
<A NAME="RD19002ST-19">19</A>
de Koning, C. B.; Michael, J. P.;
van Otterlo, W. A. L., unpublished results.
<A NAME="RD19002ST-20">20</A>
For isomer 3,
the C-1 methyl substituent showed an NOE with the H-4 pseudo-axial proton, indicating that
the C-1 methyl substituent must be pseudo-axial.
For the cis-isomer 9 the
same NOE was seen, as well as an NOE between the 1-methyl and 3-methyl
substituents, thereby fixing the cis-arrangement.
Therefore in isomer 3 the C-1 methyl and
C-3 methyl groups must be trans.
<A NAME="RD19002ST-21">21</A>
Hoffmann RW.
Chem.
Rev.
1989,
89:
1841
<A NAME="RD19002ST-22">22</A>
NaH (60% in oil, 0.03 g,
0.86 mmol, 10 mol equiv) was added to mesylate 8 (0.040
g, 0.086 mmol), dissolved in anhyd THF (10 cm3),
under an argon atmosphere. The reaction mixture was stirred for
18 h, after which the mixture was cooled to 0 ºC. Water
(10 cm3) was added dropwise and the mixture
was extracted with diethyl ether (2 × 10 cm3). The
organic solvent was washed with brine (10 cm3),
dried and concentrated in vacuo. Preparative layer chromato-graphy
on silica gel (EtOAc-hexane-aq NH4OH,
66:33:1) afforded an equimolar mixture of the 1,3-trans-dimethyl product 3, its 1,3-cis-dimethyl
isomer 9 (0.027 g, 85%) as rotamers
about the N-Ac bond.