References
<A NAME="RD03103ST-1">1</A>
For the previous paper in this series,
see: Sotelo, E.; Raviña, E. Tetrahedron
Lett., in press.
<A NAME="RD03103ST-2A">2a</A>
Szostak W.
Chem. Rev.
1997,
97:
349
<A NAME="RD03103ST-2B">2b</A>
Thompson LA.
Ellman JA.
Chem.
Rev.
1996,
96:
555
<A NAME="RD03103ST-2C">2c</A>
Fruchtel JS.
Jung G.
Angew. Chem.,
Int. Ed. Engl.
1996,
35:
17
<A NAME="RD03103ST-3A">3a</A>
Smith AL.
Thompson CG.
Leeson PD.
Bioorg. Med.
Chem. Lett.
1996,
6:
1483
<A NAME="RD03103ST-3B">3b</A>
Smith AL.
Stevenson GI.
Swain CJ.
Castro JL.
Tetrahedron
Lett.
1998,
39:
8317
<A NAME="RD03103ST-3C">3c</A>
Guillier F.
Orain D.
Bradley M.
Chem.
Rev.
2000,
100:
2091
<A NAME="RD03103ST-4">4</A>
Frank H.
Heinisch G.
Pharmacologically
Active Pyridazines. Part 2. In Progress
in Medicinal Chemistry
Vol. 29:
Ellis GP.
Luscombe DK.
Elsevier;
Amsterdam:
1992.
p.141
<A NAME="RD03103ST-5A">5a</A>
Goualt N.
Cupif JF.
Picaro S.
Lecat A.
David M.
J. Pharm. Pharmacol.
2001,
7:
981
<A NAME="RD03103ST-5B">5b</A>
Parrot I.
Wermuth CG.
Hibert M.
Tetrahedron
Lett.
1999,
40:
7975
<A NAME="RD03103ST-6">6</A>
Laguna R.
Rodriguez-Liñares B.
Cano E.
Estévez I.
Raviña E.
Sotelo E.
Chem. Pharm.
Bull.
1997,
45:
1151
<A NAME="RD03103ST-7">7</A>
Sotelo E.
Fraiz N.
Yañez M.
Laguna R.
Cano E.
Brea J.
Raviña E.
Bioorg.
Med. Chem. Lett.
2002,
12:
1575
<A NAME="RD03103ST-8">8</A>
Sotelo E.
Fraiz N.
Yañez M.
Terrades V.
Laguna R.
Cano E.
Raviña E.
Bioorg.
Med. Chem.
2002,
10:
2873
<A NAME="RD03103ST-9A">9a</A>
Estévez I.
Coelho A.
Raviña E.
Synthesis
1999,
9:
1666
<A NAME="RD03103ST-9B">9b</A>
Coelho A.
Sotelo E.
Estévez I.
Raviña E.
Synthesis
2001,
6:
871
<A NAME="RD03103ST-10A">10a</A>
RŽkyek O.
Maes BUW.
Jonkers THM.
Lemière GLF.
Dommisse RA.
Tetrahedron
2001,
57:
10009
<A NAME="RD03103ST-10B">10b</A>
Komrlj J.
Maes BUW.
Lemière GLF.
Haemers A.
Synlett
2000,
11:
1581
<A NAME="RD03103ST-11">11</A>
de Leval X.
Delarge J.
Somers F.
Tullio PD.
Henrotin Y.
Pirotte B.
Dogné JM.
Curr. Med. Chem.
2000,
7:
1041
<A NAME="RD03103ST-12">12</A>
Selected physical and spectroscopic
data of representative compounds 2. Compound 2a: Yield: 89%, mp 237-238 °C. IR
(KBr): 3100, 1680 cm-1. 1H
NMR (300 MHz, CDCl3):
δ = 7.55-7.47
(m, 5 H, Ph), 7.40 (s, 1 H, CH), 5.58 (d, J = 8.1 Hz,
2 H, CH2), 4.74 (t, J = 8.1
Hz, 1 H, OH). Compound 2b: Yield: 70%,
mp 113-114 °C. IR (KBr): 3400, 2960, 1670 cm-1. 1H
NMR (300 MHz, DMSO-d
6): 8.19
(s, 1 H, CH), 6.97 (t, J = 7.6
Hz, 1 H, OH), 5.34 (d, J = 7.6
Hz, 2 H, CH2).
<A NAME="RD03103ST-13">13</A>
Coelho A.
Raviña E.
Sotelo E.
Synlett
2002,
12:
6062
<A NAME="RD03103ST-14">14</A>
Ripoll J.
Vallé Y.
Synthesis
1993,
659
<A NAME="RD03103ST-15">15</A>
General Procedure
for the Preparation of Immobilized Pyridazinones 3: The amount
of 300 mg of Ellman’s resin (Aldrich, 0.420 mmol) was loaded
into a reactor on a PLS 6 × 4 organic
synthesizer (Advanced ChemTech) and treated with 2 (1.26
mmol), PPTS (0.63 mmol) and dichloroethane (4 mL). The mixture was
heated at 70 °C during 12 h, drained, washed sequentially
with dichloroethane (3 × 5 mL), CH2Cl2 (3 × 5
mL), DMF (3 × 5 mL), CH2Cl2 (3 × 5 mL),
MeOH (3 × 5 mL), Et2O (3 × 5
mL) and dried in a vacuum dessicator.
<A NAME="RD03103ST-16A">16a</A>
Miyara N.
Yanagi T.
Suzuki A.
Synth Commun.
1981,
11:
513
<A NAME="RD03103ST-16B">16b</A>
Tsuji J.
Palladium
Reagents and Catalysts
Wiley;
Chichester:
1995.
<A NAME="RD03103ST-17">17</A>
General Procedure
for Suzuki Arylation of Immobilized Halopyridazinones 3: The
amount of 100 mg of pyridazinone-derivatized support 3 (0.120
mmol) was loaded into a reactor on a PLS 6 × 4
organic synthesizer (Advanced ChemTech) and treated with the appropriate boronic
acid (0.300 mmol for 1a and 0.600 mmol
for 1b,c), Pd(PPh3)4 (0.05
equiv), 2 M Na2CO3 (0.7 mL) and DME (3 mL).
The mixture was heated at 70 °C during 12 h, drained, washed
sequentially with DME (3 × 5 mL), DME/H2O (3 × 5
mL), 0.2 N HCl (3 × 5 mL), EtOAc (3 × 5
mL), MeOH (3 × 5 mL), Et2O
(3 × 5 mL) and dried in a vacuum dessicator.
<A NAME="RD03103ST-18">18</A>
General Procedure
for Cleveage of 4,5- and 5,6-Diarylpyridazinones Form Solid Support: The
above resin (75 mg) was treated with 20% TFA in CH2Cl2 (2
mL) for 15 min. After filtration and washing with CH2Cl2 the combined
filtrates were heated at 50 °C for 12 h, concentrated to
give a residue wich was re-dissolved in a 1:1 mixture of CH3CN-H2O.
The solvent was then removed under presure to give pyridazinones 6 and 7.
<A NAME="RD03103ST-19">19</A>
Selected physical and spectroscopic
data of compounds 6 and 7:
Compound 6a: Mp 135-136 °C.
IR (KBr): 3100-2600, 1642 cm-1. 1H
NMR (300 MHz, DMSO-d
6): δ = 13.05 (br
s, 1 H, NH), 7.74 (s, 1 H, CH), 7.04-6.92 (m, 10 H, Ph). Compound 6b: Mp 147-149 °C. IR
(KBr): 3100-2600, 1639 cm-1. 1H
NMR (300 MHz, DMSO-d
6): δ = 13.16
(br s, 1 H, NH), 7.90 (s, 1 H, CH), 7.52-7.00 (m, 8 H,
Ph), 2.24 (s, 6 H, 2 × CH3).
Compound 7a: Mp178-180 °C.
IR (KBr): 3100-2600, 1668, 1589 cm-1. 1H
NMR (300 MHz, DMSO-d
6): δ = 11.58
(br s, 1 H, NH), 7.38-7.20 (m, 10 H, Ph), 7.01 (s, 1 H, CH).
Compound 7b: Mp 198-200 °C.
IR (KBr): 3100-2600, 1642 cm-1. 1H
NMR (300 MHz, DMSO-d
6): δ = 11.40
(br s, 1 H, NH), 7.41-7.29 (m, 5 H, Ph), 7.18 (d, J = 8.0, 2
H, phenyl), 7.07 (d, J = 8.0,
2 H, phenyl), 7.01 (s, 1 H, CH), 2.33 (s, 3 H, CH3).
<A NAME="RD03103ST-20">20</A>
HPLC analyses were performed using
a 5 µm 4.6 × 150 mm reverse
phase column (70% acetonitrile/30% H2O)
over 40 min, flow rate 0.5 mL/min.