Abstract
Novel efficient synthesis of several enantio-pure 2-alkylated
1α,25-dihydroxy-19-norvitamin D3 analogues through
radical introduction of 2-alkyl chain and C5-C6 position
coupling using Julia-type olefination as key steps was established
starting from commercially available (-)-quinic
acid as a chiral pool.
Key words
total synthesis - vitamin D - radical reactions - Julia reactions - coupling
References
<A NAME="RU06903ST-1">1</A>
New address: A. Yoshida, The Noguchi
Institute and Japan Chemical Innovation Institute (JCII), Itabashi-ku,
Tokyo 173-0003, Japan. Y. Suhara, Kobe Pharmaceutical University,
Higashinada-ku, Kobe 658-8558, Japan
<A NAME="RU06903ST-2">2</A>
Vitamin
D
Feldman D.
Glorieux FH.
Pike JW.
Academic
Press;
New York:
1997.
<A NAME="RU06903ST-3A">3a</A>
Umesono K.
Murakami KK.
Thompson CC.
Evans RM.
Cell
1991,
65:
1255
<A NAME="RU06903ST-3B">3b</A>
Evans RM.
Science
1988,
240:
889
<A NAME="RU06903ST-4A">4a</A> For
2-methyl series:
Konno K.
Fujishima T.
Maki S.
Liu Z.-P.
Miura D.
Chokki M.
Ishizuka S.
Yamaguchi K.
Kan Y.
Kurihara M.
Miyata N.
Smith C.
DeLuca FH.
Takayama H.
J. Med.
Chem.
2000,
43:
4247
<A NAME="RU06903ST-4B">4b</A> For 2α-alkyl and
2α-(ω-hydroxyalkyl) series:
Suhara Y.
Nihei K.
Kurihara M.
Kittaka A.
Yamaguchi K.
Fujishima T.
Konno K.
Miyata N.
Takayama H.
J.
Org. Chem.
2001,
66:
8760
<A NAME="RU06903ST-4C">4c</A> For 2α-(ω-hydroxyalkoxy)
series:
Kittaka A.
Suhara Y.
Takayanagi H.
Fujishima T.
Kurihara M.
Takayama H.
Org.
Lett.
2000,
2:
2619
<A NAME="RU06903ST-5">5</A> For our account:
Takayama H.
Kittaka A.
Fujishima T.
Suhara Y.
J. Synth.
Org. Chem., Jpn.
2002,
60:
370
<A NAME="RU06903ST-6A">6a</A>
Perlman KL.
Swenson RE.
Paaren HE.
Schnoes HK.
DeLuca HF.
Tetrahedron
Lett.
1991,
32:
7663
<A NAME="RU06903ST-6B">6b</A>
Sicinski RR.
Perlman KL.
DeLuca HF.
J. Med. Chem.
1994,
37:
3730
<A NAME="RU06903ST-6C">6c</A>
Sicinski RR.
Prahl JM.
Smith CM.
DeLuca HF.
J.
Med. Chem.
1998,
41:
4662
<A NAME="RU06903ST-6D">6d</A>
Sicinski RR.
Rotkiewicz P.
Kolinski A.
Sicinska W.
Prahl JM.
Smith CM.
DeLuca HF.
J. Med. Chem.
2002,
45:
3366
<A NAME="RU06903ST-6E">6e</A>
Huang P.-q.
Sabbe K.
Pottie M.
Vandewalle M.
Tetrahedron Lett.
1995,
36:
8299
<A NAME="RU06903ST-6F">6f</A>
Hilpert H.
Wirz B.
Tetrahedron
2001,
57:
681
<A NAME="RU06903ST-6G">6g</A>
Hanazawa T.
Inamori H.
Masuda T.
Okamoto S.
Sato F.
Org.
Lett.
2001,
3:
2205
<A NAME="RU06903ST-6H">6h</A>
Wu Y.
Zhao Y.
Tian H.
De
Clercq P.
Vandewalle M.
Berthier M.
Pellegrino G.
Maillos P.
Pascal J.-C.
Eur.
J. Org. Chem.
2001,
3779
<A NAME="RU06903ST-6I">6i</A>
Okano T.
Nakagawa K.
Kubodera N.
Ozono K.
Isaka A.
Osawa A.
Terada M.
Mikami K.
Chem. Biol.
2000,
7:
173
<A NAME="RU06903ST-6J">6j</A>
Mikami K.
Osawa A.
Isaka A.
Terada M.
Okano T.
Tetrahedron
Lett.
1998,
39:
3359
<A NAME="RU06903ST-6K">6k</A>
Suhara Y.
Kittaka A.
Ono K.
Kurihara M.
Fujishima T.
Yoshida A.
Takayama H.
Bioorg.
Med. Chem. Lett.
2002,
12:
3533
<A NAME="RU06903ST-6L">6l</A>
Shimizu M.
Iwasaki Y.
Shibamoto Y.
Sato M.
DeLuca HF.
Yamada S.
Bioorg. Med. Chem. Lett.
2003,
13:
809
<A NAME="RU06903ST-7">7</A>
In fact, Wittig reaction of our phosphine
oxide 9 (R = CH2CH=CH2)
with the known 8-keto CD-ring derivative did not proceed. See also
ref.6d
<A NAME="RU06903ST-8A">8a</A>
Maryanoff BE.
Reitz AB.
Chem. Rev.
1989,
89:
863
<A NAME="RU06903ST-8B">8b</A>
Kulkarni YS.
Aldchimica Acta
1990,
23:
39
<A NAME="RU06903ST-9A">9a</A>
Desmaele D.
Tanier S.
Tetrahedron
Lett.
1985,
26:
4941
<A NAME="RU06903ST-9B">9b</A>
See also ref.
[6]
<A NAME="RU06903ST-10A">10a</A>
Keck GE.
Enholm EJ.
Yates JB.
Wiley MR.
Tetrahedron
1985,
41:
4079
<A NAME="RU06903ST-10B">10b</A>
Keck GE.
Yates JB.
J. Am.
Chem. Soc.
1982,
104:
5829
<A NAME="RU06903ST-11">11</A> Olefinic geometry was assigned according
to the following literature:
Trost BM.
Dumas J.
Villa M.
J.
Am. Chem. Soc.
1992,
114:
9836
<A NAME="RU06903ST-12A">12a</A>
Baudin JB.
Hareau G.
Julia SA.
Ruel O.
Tetrahedron
Lett.
1991,
32:
1175
<A NAME="RU06903ST-12B">12b</A>
Blackmore PR.
Cole WJ.
Kocie
ski PJ.
Morley A.
Synlett
1998,
26
<A NAME="RU06903ST-13">13</A>
In the literature,6d oxidation
of 2-hydroxyl derivative 10 followed by
a Wittig olefination-hydrogenation sequence was reported for a 2-ethylation
strategy. However, Wittig reaction provided the 2-ethylidene product
only in 18% yield, and the subsequent chemoselective hydrogenation gave
a 2-ethyl analogue in ca. 45% yield.