Abstract
Sphingolipids are a diverse group of lipids found in all eukaryotes and some bacteria,
consisting of a hydrophobic ceramide and a hydrophilic head group. We have summarised
the contemporary understanding of the structure of plant sphingolipids with an emphasis
on glucosylceramides and inositolphosphorylceramides. Plant glucosylceramides are
important structural components of plasma and vacuole membranes. Inositolphosphorylceramides
have been identified as moieties of the glycosylphosphorylinositol (GPI) anchors of
plant proteins targeted to the plasma membrane. In the last few years, progress has
been made in the cloning of plant genes coding for enzymes involved in sphingolipid
metabolism. As found in yeast and mammals, the plant sphingolipid pathway is a potential
generator of powerful cell signals. The role of plant sphingolipid metabolites in
programmed cell death and calcium influx is discussed.
Key words
Plant sphingolipids - ceramide - sphingolipid signalling - membrane lipids - plant
GPI-anchored proteins
References
- 1
Abbas H., Tanaka T., Duke S., Porter J., Wray E., Hodges L., Sessions A., Wang E.,
Merrill A. H., Riley R..
Fumonisin- and AAL-toxin-induced disruption of sphingolipid metabolism with accumulation
of free sphingoid bases.
Plant Physiol..
(1994);
106
1085-1093
- 2
Asai T., Stone J. M., Heard J. E., Kovtun Y., Yorgey P., Sheen J., Ausubel F. M..
Fumonisin B1-induced cell death in Arabidopsis protoplasts requires jasmonate-, ethylene-, and salicylate-dependent signaling pathways.
Plant Cell.
(2000);
12
1823-1836
- 3
Boggs J. M..
Lipid intermolecular hydrogen bonding: influence on structural organization and membrane
function.
Biochim. Biophys. Acta.
(1987);
906
353-404
- 4
Bohn M., Heinz E., Luthje S..
Lipid composition and fluidity of plasma membranes isolated from corn (Zea mays L.) roots.
Arch. Biochem. Biophys..
(2001);
387
35-40
- 5
Borner G. H. H., Sherrier D. J., Stevens T. J., Arkin I. T., Dupree P..
Prediction of glycosylphosphatidylinositol-anchored proteins in Arabidopsis. A Genomic Analysis.
Plant Physiol..
(2002);
129
486-499
- 6
Brandwagt B. F., Mesbah L. A., Takken F. L., Laurent P. L., Kneppers T. J., Hille J.,
Nijkamp H. J..
A longevity assurance gene homolog of tomato mediates resistance to Alternaria alternata f. sp. lycopersici toxins and fumonisin B1.
Proc. Natl. Acad. Sci. USA.
(2000);
97
4961-4966
- 7
Brodersen P., Petersen M., Pike H. M., Olszak B., Skov S., Odum N., Jorgensen L. B.,
Brown R. E., Mundy J..
Knockout of Arabidopsis accelerated-cell-death11 encoding a sphingosine transfer protein causes activation
of programmed cell death and defense.
Genes Dev..
(2002);
16
490-502
- 8
Cahoon E. B., Lynch D. V..
Analysis of glucocerebrosides of rye (Secale cereale L. cv Puma) leaf and plasma membrane.
Plant Physiol..
(1991);
95
58-68
- 9
Cantatore J. L., Murphy S. M., Lynch D. V..
Compartmentation and topology of glucosylceramide synthesis.
Biochem. Soc. Trans..
(2000);
28
748-750
- 10
Carter H. E., Hendry R. A., Nojima S., Stanacev N. Z., Ohno K..
Biochemistry of the sphingolipids XIII. Determination of the structure of cerebrosides
from wheat flour.
J. Biol. Chem..
(1961);
236
1912-1916
- 11
Carter H. E., Jonson P., Weber E. J..
Glycolipids.
Ann. Rev. Biochem..
(1965);
34
109-142
- 12
Carter H. E., Koob J. L..
Sphingolipids in bean leaves (Phaseolus vulgaris).
.
J. Lipid Res..
(1969);
10
363-369
- 13
Crowther G. J., Lynch D. V..
Characterization of sphinganine kinase activity in corn shoot microsomes.
Arch. Biochem. Biophys..
(1997);
337
284-290
- 14
Darjania L., Ichise N., Ichikawa S., Okamoto T., Okuyama H., Thompson Jr G. A..
Dynamic turnover of arabinogalactan proteins in cultured Arabidopsis cells.
Plant Physiol. Biochem..
(2002);
40
69-79
- 15
de Nobel H., van Den E. H., Klis F. M..
Cell wall maintenance in fungi.
Trends Microbiol..
(2000);
8
344-345
- 16
Fujino Y., Ito S..
Existance of ceramide in alfalfa leaves.
Biochem. Biophys. Acta.
(1971);
231
242-243
- 17
Fujino Y., Ohnishi M..
Sphingolipids in wheat grain.
J. Cereal Sci..
(1983);
1
159-168
- 18
Fujino Y., Ohnishi M., Ito S..
Further studies on sphingolipids in wheat grain.
Lipids.
(1985);
20
337-342
- 19
Gilchrist D., Wang H., Bostock R..
Sphingosine-related mycotoxins in plant and animal diseases.
Can. J. Bot..
(1995);
73 (Suppl. 1)
S459-S467
- 20
Guillas I., Kirchman P. A., Chuard R., Pfefferli M., Jiang J. C., Jazwinski S. M.,
Conzelmann A..
C26-CoA-dependent ceramide synthesis of Saccharomyces cerevisiae is operated by Lag1 p and Lac1 p.
EMBO J..
(2001);
20
2655-2665
- 21 Hakomori S..
Chemistry of glycosphingolipids. Hanahan, D. J., ed. Handbook of lipid research. New York; Plemun Press (1983): 1-165
- 22
Hanada K., Hara T., Nishijima M..
Purification of the serine palmitoyltransferase complex responsible for sphingoid
base synthesis by using affinity peptide chromatography techniques.
J. Biol. Chem..
(2000);
275
8409-8415
- 23
Hanada K., Hara T., Nishijima M., Kuge O., Dickson R. C., Nagiec M. M..
A mammalian homolog of the yeast LCB1 encodes a component of serine palmitoyltransferase,
the enzyme catalyzing the first step in sphingolipid synthesis.
J. Biol. Chem..
(1997);
272
32108-32114
- 24
Hannun Y. A., Luberto C., Argraves K. M..
Enzymes of sphingolipid metabolism: from modular to integrative signaling.
Biochemistry.
(2001);
40
4893-4903
- 25
Hannun Y. A., Obeid L. M..
The Ceramide-centric universe of lipid-mediated cell regulation: Stress encounters
of the lipid kind.
J. Biol. Chem..
(2002);
277
25847-25850
- 26
Hsieh T. C., Kaul K., Laine R. A., Lester R. L..
Structure of a major glycophosphoceramide from tobacco leaves, PSL-I: 2- deoxy-2-acetamido-D-glucopyranosyl(alpha1
leads to 4)-D- glucuronopyranosyl(alpha1 leads to 2)myoinositol-1-O-phosphoceramide.
Biochemistry.
(1978);
17
3575-3581
- 27
Hsieh T. C., Lester R. L., Laine R. A..
Glycophosphoceramides from plants. Purification and characterization of a novel tetrasaccharide
derived from tobacco leaf glycolipids.
J. Biol. Chem..
(1981);
256
7747-7755
- 28
Imai H., Ohnishi M., Hotsubo K., Kojima M., Ito S..
Sphingoid base composition of cerebrosides from plant leaves.
Biosci. Biotechnol. Biochem..
(1997);
61
351-353
- 29
Imai H., Yamamoto K., Shibahara A., Miyatani S., Nakayama T..
Determining double-bond positions in monoenoic 2-hydroxy fatty acids of glucosylceramides
by gas chromatography-mass spectrometry.
Lipids.
(2000);
35
233-236
- 30
Jenkins G. M., Richards A., Wahl T., Mao C., Obeid L., Hannun Y..
Involvement of yeast sphingolipids in the heat stress response of Saccharomyces cerevisiae.
.
J. Biol. Chem..
(1997);
272
32566-32572
- 31
Kaul K., Lester R. L..
Characterization of inositol-containing phosphosphingolipids from tobacco leaves.
Plant Physiol..
(1975);
55
120-129
- 32
Kawaguchi M., Imai H., Naoe M., Yasui Y., Ohnishi M..
Cerebrosides in grapevine leaves: distinct composition of sphingoid bases among the
grapevine species having different tolerances to freezing temperature.
Biosci. Biotechnol. Biochem..
(2000);
64
1271-1273
- 33
Leipelt M., Warnecke D., Zahringer U., Ott C., Muller F., Hube B., Heinz E..
Glucosylceramide synthases, a gene family responsible for the biosynthesis of glucosphingolipids
in animals, plants, and fungi.
J. Biol. Chem..
(2001);
276
33621-33629
- 34
Lester R. L., Dickson R. C..
Sphingolipids with inositolphosphate-containing head groups.
Adv. Lipid Res..
(1993);
26
253-274
- 35 Lynch D. V..
Sphingolipids. Moore, T. S., ed. Lipid Metabolism in Plants. Boca Raton; CRC Press (1993 a): 285-308
- 36 Lynch D. V..
Enzymes of sphingolipid metabolism in plants. Merrill, A. H., Jr. and Hannun, Y., eds. Sphingolipid Metabolism. San Diego; Academic
Press (2000): 130-149
- 37
Lynch D. V., Caffrey M., Hogan J. L., Steponkus P. L..
Calorimetric and x-ray diffraction studies of rye glucocerebroside mesomorphism.
Biophys. J..
(1992);
61
1289-1300
- 38 Lynch D. V., Cahoon E. B., Fairfield S. R., Tannishtha.
Glycosphingolipids of plant membranes. Quinn, P. J. and Harwood, J. L., eds. Physical Properties of Membrane Lipids. London;
Portland Press (1990): 47-52
- 39
Lynch D. V., Fairfield S. R..
Sphingolipid long-chain base synthesis in plants.
Plant Physiol..
(1993);
103
1421-1429
- 40 Lynch D. V., Phinney A. J..
The transbilayer distribution of glucosylceramide in plant plasma membrane. Kader, J. C. and Mazliak, P., eds. Plant Lipid Metabolism. Dordrecht; Kluwer Academic
Publishers (1995): 239-241
- 41 Lynch D. V., Spence R. A., Theiling K. M., Thomas K. W., Lee M. T..
Enzymatic reactions involved in ceramide metabolism. Murata, N. and Somerville, C. R., eds. Biochemistry and Molecular Biology of Membrane
and Storage Lipids in Plants. Rockville; ASPP (1993 b): 183-190
- 42
Lynch D. V., Steponkus P. L..
Plasma membrane lipid alterations associated with cold acclimation of winter rye seedlings
(Secale cereale L. cv Puma).
Plant Physiol..
(1987 a);
83
761-767
- 43
Lynch D. V., Steponkus P. L..
Thermotropic phase behavior of glucocerebrosides from rye leaves.
Cryobiology.
(1987 b);
24
555-556
- 44
Mao C., Xu R., Bielawska A., Obeid L. M..
Cloning of an alkaline ceramidase from Saccharomyces cerevisiae. An enzyme with reverse (CoA-independent) ceramide synthase activity.
J. Biol. Chem..
(2000 a);
275
6876-6884
- 45
Mao C., Xu R., Bielawska A., Szulc Z. M., Obeid L. M..
Cloning and characterization of a Saccharomyces cerevisiae alkaline ceramidase with specificity for dihydroceramide.
J. Biol. Chem..
(2000 b);
275
31369-31378
- 46
Mao C., Xu R., Szulc Z. M., Bielawska A., Galadari S. H., Obeid L. M..
Cloning and characterization of a novel human alkaline ceramidase. A mammalian enzyme
that hydrolyzes phytoceramide.
J. Biol. Chem..
(2001);
276
26577-26588
- 47
Merrill Jr. A. H..
De novo sphingolipid biosynthesis: a necessary, but dangerous pathway.
J. Biol. Chem..
(2002);
277
25843-25846
- 48
Merrill A. H., Jr., Schmelz E. M., Wang E., Dillehay D. L., Rice L. G., Meredith F.,
Riley R. T..
Importance of sphingolipids and inhibitors of sphingolipid metabolism as components
of animal diets.
J. Nutr..
(1997);
127
830-833
- 49
Merrill A. H., Jr., van Echten G., Wang E., Sandhoff K..
Fumonisin B1 inhibits sphingosine (sphinganine) N-acyltransferase and de novo sphingolipid biosynthesis in cultured neurons in situ.
J. Biol. Chem..
(1993);
268
27299-27306
- 50
Morita N., Nakazato H., Okuyama H., Kim Y., Thompson Jr. G. A..
Evidence for a glycosylinositolphospholipid-anchored alkaline phosphatase in the aquatic
plant Spirodela oligorrhiza.
.
Biochim. Biophys. Acta.
(1996);
1290
53-62
- 51
Muniz M., Riezman H..
Intracellular transport of GPI-anchored proteins.
EMBO J..
(2000);
19
10-15
- 52
Nagiec M. M., Baltisberger J. A., Wells G. B., Lester R. L., Dickson R. C..
The LCB2 gene of Saccharomyces and the related LCB1 gene encode subunits of serine palmitoyltransferase, the initial enzyme in sphingolipid
synthesis.
Proc. Natl. Acad. Sci. USA.
(1994);
91
7899-7902
- 53
Ng C. K., Carr K., McAinsh M. R., Powell B., Hetherington A. M..
Drought-induced guard cell signal transduction involves sphingosine-1-phosphate.
Nature.
(2001);
410
596-599
- 54
Ng C. K. Y., Hetherington A. M..
Sphingolipid-mediated signalling in Plants.
Ann. Bot..
(2001);
88
957-965
- 55
Nishiura H., Tamura K., Morimoto Y., Imai H..
Characterization of sphingolipid long-chain base kinase in Arabidopsis thaliana.
.
Biochem. Soc. Trans..
(2000);
28
747-748
- 56
Norberg P., Mansson J. E., Liljenberg C..
Characterization of glucosylceramide from plasma membranes of plant root cells.
Biochim. Biophys. Acta.
(1991);
1066
257-260
- 57
Norberg P., Nilsson R., Nyiredy S., Liljenberg C..
Glucosylceramides of oat root plasma membranes - physicochemical behaviour in natural
and in model systems.
Biochim. Biophys. Acta.
(1996);
1299
80-86
- 58
Ohnishi M., Fujino Y..
Chemical composition of ceramide and cerebroside in Azuki bean seeds.
Agric. Biol. Chem..
(1981);
45
1283-1284
- 59
Ohnishi M., Fujino Y..
Sphingolipids in immature and mature soybeans.
Lipids.
(1982);
17
803-810
- 60 Ohnishi M., Imai H., Kojima M., Yoshida S., Murata N., Fujino Y., Ito S..
Separation of cerebroside species in plants by reversed-phase HPLC and their phase
transition temperature. Proc. ISF-JOCS World Congress II. (1988): 930-935
- 61
Ohnishi M., Ito S., Fujino Y..
Characterization of sphingolipids in spinach leaves.
Biochem. Biophys. Acta.
(1983);
752
416-422
- 62
Ohnishi M., Ito S., Fujino Y..
Structural characterization of sphingolipids in leafy stems of rice.
Agric. Biol. Chem..
(1985);
49
3327-3329
- 63
Oxley D., Bacic A..
Structure of the glycosylphosphatidylinositol anchor of an arabinogalactan protein
from Pyrus communis suspension-cultured cells.
Proc. Natl. Acad. Sci. USA.
(1999);
96
14246-14251
- 64
Peskan T., Westermann M., Oelmuller R..
Identification of low-density Triton X-100-insoluble plasma membrane microdomains
in higher plants.
Eur. J. Biochem..
(2000);
267
6989-6995
- 65
Poincelot R. P..
Isolation and lipid composition of spinach chloroplast envelop membranes.
Arch. Biochem. Biophys..
(1973);
159
134-142
- 66
Reggiori F., Canivenc-Gansel E., Conzelmann A..
Lipid remodelling leads to the introduction and exchange of defined ceramides on GPI
proteins in the ER and Golgi of Saccharomyces cerevisiae.
.
EMBO J..
(1997);
16
3506-3518
- 67
Reggiori F., Conzelmann A..
Biosynthesis of inositol phosphoceramides and remodelling of glycosylphosphatidylinositol
anchors in Saccharomyces cerevisiae are mediated by different enzymes.
J. Biol. Chem..
(1998);
273
30550-30559
- 68
Rochester C. P., Kjellbom P., Andersson B., Larsson C..
Lipid composition of plasma membranes isolated from light-grown barley (Hordeum vulgare) leaves: identification of cerebroside as a major component.
Arch. Biochem. Biophys..
(1987);
255
385-391
- 69
Sandstrom R. P., Cleland R. E..
Comparison of the lipid composition of oat root and coleoptile plasma membranes: lack
of short-term change in response to auxin.
Plant Physiol..
(1989);
90
1207-1213
- 70
Schmelz E. M., Roberts P. C., Kustin E. M., Lemonnier L. A., Sullards M. C., Dillehay D. L.,
Merrill Jr. A. H..
Modulation of intracellular β-catenin localization and intestinal tumorigenesis in vivo and in vitro by sphingolipids.
Cancer Res..
(2001);
61
6723-6729
- 71
Schorling S., Vallee B., Barz W. P., Riezman H., Oesterhelt D..
Lag1 p and Lac1 p are essential for the Acyl-CoA-dependent ceramide synthase reaction
in Saccharomyces cerevisae.
.
Mol. Biol. Cell.
(2001);
12
3417-3427
- 72
Simons K., Ikonen E..
Functional rafts in cell membranes.
Nature.
(1997);
387
569-572
- 73
Spassieva S. D., Markham J. E., Hille J..
The plant disease resistance gene Asc-1 prevents disruption of sphingolipid metabolism during AAL-toxin induced programmed
cell death.
Plant J..
(2002);
32
561-572
- 74
Sperling P., Blume A., Zahringer U., Heinz E..
Further characterization of Delta(8)-sphingolipid desaturases from higher plants.
Biochem. Soc. Trans..
(2000);
28
638-641
- 75
Sperling P., Libisch B., Zahringer U., Napier J. A., Heinz E..
Functional identification of a delta8-sphingolipid desaturase from Borago officinalis.
.
Arch. Biochem. Biophys..
(2001 a);
388
293-298
- 76
Sperling P., Ternes P., Moll H., Franke S., Zahringer U., Heinz E..
Functional characterization of sphingolipid C4-hydroxylase genes from Arabidopsis thaliana.
.
FEBS Lett..
(2001 b);
494
90-94
- 77
Sperling P., Zahringer U., Heinz E..
A sphingolipid desaturase from higher plants. Identification of a new cytochrome b5
fusion protein.
J. Biol. Chem..
(1998);
273
28590-28596
- 78
Spiegel S., Milstien S..
Sphingosine 1-phosphate, a key cell signaling molecule.
J. Biol. Chem..
(2002);
277
25851-25854
- 79
Steponkus P. L., Lynch D. V..
Freeze/thaw-induced destabilization of the plasma membrane and the effects of cold
acclimation.
J. Bioenerg. Biomembr..
(1989);
21
21-41
- 80
Sugawara T., Miyazawa T..
Separation and determination of glycolipids from edible plant sources by high-performance
liquid chromatography and evaporative light-scattering detection.
Lipids.
(1999);
34
1231-1237
- 81
Sullards M. C., Lynch D. V., Merrill Jr. A. H., Adams J..
Structure determination of soybean and wheat glucosylceramides by tandem mass spectrometry.
J. Mass Spectrom..
(2000);
35
347-353
- 82
Takos A. M., Dry I. B., Soole K. L..
Detection of glycosyl-phosphatidylinositol-anchored proteins on the surface of Nicotiana
tabacum protoplasts.
FEBS Lett..
(1997);
405
1-4
- 83
Takos A. M., Dry I. B., Soole K. L..
Glycosyl-phosphatidylinositol-anchor addition signals are processed in Nicotiana tabacum.
.
Plant J..
(2000);
21
43-52
- 84
Tamura K., Mitsuhashi N., Hara-Nishimura I., Imai H..
Characterization of an Arabidopsis cDNA encoding a subunit of serine palmitoyltransferase, the initial enzyme in sphingolipid
biosynthesis.
Plant Cell Physiol..
(2001);
42
1274-1281
- 85
Tamura K., Nishiura H., Mori J., Imai H..
Cloning and characterization of a cDNA encoding serine palmitoyltransferase in Arabidopsis thaliana.
.
Biochem. Soc. Trans..
(2000);
28
745-747
- 86
Tavernier E., Le Quoc D., Le Quoc K..
Lipid composition of the vacuolar membrane of Acer pseudoplatanus cultured cells.
Biochim. Biophys. Acta.
(1993);
1167
242-247
- 87
Ternes P., Franke S., Zahringer U., Sperling P., Heinz E..
Identification and characterization of a sphingolipid delta4-desaturase family.
J. Biol. Chem..
(2002);
227
25512-25518
- 88 Thudichum J. L. W.. Reports of the medical officer of privy council and local government
board. N. Ser. III. (1874): 113
- 89
Tolleson W. H., Couch L. H., Melchior W. B., Jr., Jenkins G. R., Muskhelishvili M.,
Muskhelishvili L., McGarrity L. J., Domon O., Morris S. M., Howard P. C..
Fumonisin B1 induces apoptosis in cultured human keratinocytes through sphinganine
accumulation and ceramide depletion.
Int. J. Oncol..
(1999);
14
833-843
- 90
Uemura M., Steponkus P. L..
A contrast of the plasma membrane lipid composition of oat and rye leaves in relation
to freezing tolerance.
Plant Physiol..
(1994);
104
479-496
- 91
Venkataraman K., Riebeling C., Bodennec J., Riezman H., Allegood J. C., Sullards M. C.,
Merrill A. H., Jr., Futerman A. H..
Upstream of growth and differentiation factor 1 (uog1), a mammalian homolog of the yeast longevity assurance gene 1 (LAG1), regulates N-Stearoyl-sphinganine (C18-(Dihydro)ceramide) synthesis in a Fumonisin B1-independent
manner in mammalian cells.
J. Biol. Chem..
(2002);
277
35642-35649
- 92
Vesper H., Schmelz E. M., Nikolova-Karakashian M. N., Dillehay D. L., Lynch D. V.,
Merrill Jr. A. H..
Sphingolipids in food and the emerging importance of sphingolipids to nutrition.
J. Nutr..
(1999);
129
1239-1250
- 93
Wang E., Li J., Bostock R., Gilchrist D..
Apoptosis: a functional paradigm for programmed plant cell death induced by a host-selective
phytotoxin and invoked during development.
Plant Cell.
(1996);
8
375-391
- 94
Wang E., Norred W. P., Bacon C. W., Riley R. T., Merrill Jr. A. H..
Inhibition of sphingolipid biosynthesis by fumonisins. Implications for diseases associated
with Fusarium moniliforme.
.
J. Biol. Chem..
(1991);
266
14486-14490
- 95
Weiss B., Stoffel W..
Human and murine serine-palmitoyl-CoA transferase - cloning, expression and characterization
of the key enzyme in sphingolipid synthesis.
Eur. J. Biochem..
(1997);
249
239-247
- 96
Witsenboer H., Schaik C. E., Bino R. J., Loffler H. J. M., Nijkamp H. J., Hille J..
Effects of Alternaria alternata f.sp. lycopersici toxins at different levels of tomato plant cell development.
Plant Science.
(1988);
56
253-260
- 97
Xu X., Bittman R., Duportail G., Heissler D., Vilcheze C., London E..
Effect of the structure of natural sterols and sphingolipids on the formation of ordered
sphingolipid/sterol domains (rafts). Comparison of cholesterol to plant, fungal, and
disease-associated sterols and comparison of sphingomyelin, cerebrosides, and ceramide.
J. Biol. Chem..
(2001);
276
33540-33546
- 98
Yoshida S., Uemura M..
Lipid composition of plasma membranes and tonoplasts isolated from etiolated seedlings
of mung bean (Vigna radiata L.).
Plant Physiol..
(1986);
82
807-812
- 99
Yoshida S., Washio K., Kenrick J., Orr G..
Thermotropic properties of lipids extracted from plasma membrane and tonoplast isolated
from chilling-sensitive mung bean (Vigna radiata [L.] Wilczek).
Plant Cell Physiol..
(1988);
29
1411-1416
S. Spassieva
Dept. Molecular Biology of Plants
Research School GBB
University of Groningen
Kerklaan 30
9751 NN Haren
The Netherlands
eMail: s.d.spassieva@biol.rug.nl
Section Editor: L. A. C. J. Voesenek