References
<A NAME="RD12203ST-1A">1a</A>
Dickinson JM.
Nat. Prod. Rep.
1993,
10:
71
<A NAME="RD12203ST-1B">1b</A>
Vardaro RR.
DiMarzo V.
Crispino A.
Cimino G.
Tetrahedron
1991,
47:
5569
<A NAME="RD12203ST-1C">1c</A>
Groutas WC.
Stanga MA.
Brubaker MJ.
Huang TL.
Moi MK.
Carroll RT.
J. Med. Chem.
1985,
28:
1106
<A NAME="RD12203ST-2A">2a</A>
Lee J.-H.
Kim W.-S.
Lee YY.
Cho C.-G.
Tetrahedron Lett.
2002,
43:
5779
<A NAME="RD12203ST-2B">2b</A>
Lee J.-H.
Park J.-S.
Cho C.-G.
Org. Lett.
2002,
4:
1171
<A NAME="RD12203ST-3A">3a</A>
Shi X.
Leal WS.
Liu Z.
Schrader E.
Meinwald J.
Tetrahedron Lett.
1995,
36:
71
<A NAME="RD12203ST-3B">3b</A>
Leal WS.
Shi X.
Liang D.
Schal C.
Meinwald J.
Proc. Natl. Acad. Sci. U.S.A.
1995,
92:
1033
<A NAME="RD12203ST-4">4</A>
Cerezo S.
Moreno-Mañas M.
Pleixats R.
Tetrahedron
1998,
54:
7813
<A NAME="RD12203ST-5A">5a</A>
Marrison LR.
Dickinson JM.
Fairlamb IJS.
Bioorg. Med. Chem. Lett.
2002,
12:
3509
<A NAME="RD12203ST-5B">5b</A>
Marrison LR.
Dickinson JM.
Ahmed R.
Fairlamb IJS.
Tetrahedron Lett.
2002,
43:
8853
<A NAME="RD12203ST-5C">5c</A>
Marrison LR.
Dickinson JM.
Ahmed R.
Fairlamb IJS.
Bioorg. Med. Chem. Lett.
2003,
13:
2667
<A NAME="RD12203ST-6">6</A>
Metal-Catalyzed Cross-Coupling Reactions
Diederich F.
Stang PJ.
Wiley-VCH;
Weinheim:
1997.
<A NAME="RD12203ST-7">7</A>
Semmelhack MF.
Tamura R.
Schnatter W.
Springer J.
J. Am. Chem. Soc.
1984,
106:
5363
<A NAME="RD12203ST-8">8</A>
Mitsudo T.
Watanabe Y.
Nakanishi H.
Morishima I.
Inubushi T.
Takegami Y.
J. Chem. Soc., Dalton Trans.
1978,
1298
<A NAME="RD12203ST-9">9</A>
Mitsudo T.
Watanabe H.
Sasaki T.
Takegami Y.
Watanabe Y.
Kafuku K.
Nakatsu K.
Organometallics
1989,
8:
368
<A NAME="RD12203ST-10">10</A>
Mitsudo T.-A.
Watanabe H.
Sasaki T.
Watanabe Y.
Takegami Y.
Kafuku K.
Kinoshita K.
Nakatsu K.
J. Chem. Soc., Chem. Commun.
1981,
22
<A NAME="RD12203ST-11">11</A>
DePuy CH.
Parton RL.
Jones T.
J. Am. Chem. Soc.
1977,
99:
4070
<A NAME="RD12203ST-12">12</A>
Rosenblum M.
Gatsonis C.
J. Am. Chem. Soc.
1967,
89:
5074
<A NAME="RD12203ST-13">13</A>
Seyferth D.
Organometallics
2003,
22:
2
<A NAME="RD12203ST-14">14</A>
Cervera M.
Moreno-Mañas M.
Pleixats R.
Tetrahedron
1990,
46:
7885
<A NAME="RD12203ST-15A">15a</A> Reduction of 1,2,5,6-tetrabromopyracene by Fe2(CO)9 to produce pyracylene has been reported (in diethyl ether, 25 ºC), see:
Trost BM.
Bright GM.
J. Am. Chem. Soc.
1969,
91:
3689
<A NAME="RD12203ST-15B">15b</A> For further reductions of Csp3-X bonds by Fe2(CO)9, see:
Efraty A.
Chem. Rev.
1977,
77:
691
<A NAME="RD12203ST-16">16</A>
Brune HA.
Horlbeck G.
Zhorszky UIZ.
Z. Naturforsch., B: Chem. Sci.
1971,
26:
222
<A NAME="RD12203ST-17A">17a</A>
Banwell MG.
Schuhbauer HM.
Organometallics
1996,
15:
4078
<A NAME="RD12203ST-17B">17b</A>
The dehalogenated tricarbonyliron complexes of 3-bromo and 4-bromo-tropone (2,4,6-cycloheptatrien-1-one)
were not detected by Banwell’s group, private communication (2003).
<A NAME="RD12203ST-18A">18a</A>
Harrity JPA.
Kerr WJ.
Middlemiss D.
Tetrahedron Lett.
1993,
34:
2995
<A NAME="RD12203ST-18B">18b</A>
Harrity JPA.
Kerr WJ.
Midlemiss D.
Tetrahedron
1993,
49:
5565
<A NAME="RD12203ST-18C">18c</A>
Harrity JPA.
Kerr WJ.
Middlemiss D.
Scott JS.
J. Organomet. Chem.
1997,
532:
219
<A NAME="RD12203ST-18D">18d</A>
Caldwell JJ.
Colman R.
Kerr WJ.
Magennis EJ.
Synlett
2001,
1428
<A NAME="RD12203ST-19">19</A>
Knölker H.-J.
Chem. Soc. Rev.
1999,
28:
151 ; and references cited therein
<A NAME="RD12203ST-20A">20a</A>
Sugihara T.
Yamada M.
Yamaguchi M.
Nishizawa M.
Synlett
1999,
771
<A NAME="RD12203ST-20B">20b</A>
Kerr WJ.
Lindsay DM.
McLaughlin M.
Pauson PL.
Chem. Commun.
2000,
1467
<A NAME="RD12203ST-21">21</A>
General procedure for complexation studies with Fe2(CO)9: Caution: Fe(CO)
5
and Fe
2
(CO)
9
are highly toxic; Fe(CO)
5
is volatile. To a dried Schlenk tube under N2 were added Fe2(CO)9 (0.5 equiv) and the recrystallised 2-pyrone (1 equiv). Degassed anhydrous n-Bu2O (10-12 mL per mmol) was added via cannula and the mixture stirred at 65 ºC for 0.5
h whilst N2 was bubbled through slowly. Two further portions of Fe2(CO)9 (0.5 equiv) were added at 0.5 h intervals. After 2 h, the mixture was allowed to
cool to r.t. and the solvent removed in vacuo. Purification by column chromatography
using petroleum ether (40-60 ºC)/ethyl acetate (9:1), which was increased to 3:1 after
10 fractions, gave the expected brominated pyrone complex, followed by starting material
and then the hydrodebrominated 2-pyrone Fe(CO)3 complex. Note: On several occasions we have also isolated Fe3(CO)12 (dark green) in small quantities from the reactions (elutes first).
(
η
4
-4-Bromo-6-methyl-2-pyrone)tricarbonyl iron (11).
Rf = 0.45 (petroleum ether 40-60 ºC/ethyl acetate, 3:1). Mp 106-107 ºC (decomp.), dark
orange solid. IR (CH2Cl2) 2075, 2010, 1743, 1604. δH (400 MHz, CDCl3) 1.88 (3 H, s, CH
3
), 3.38 (1 H, s, H3), 5.84 (1 H, s, H5). δC (100 MHz, CDCl3) 22.37 (CH3), 54.42 (C3), 81.34 (C5), 93.72 (C4), 98.59 (C6), 168.39 (C2), 206.32 (br, 3 × CO).
LRCI m/z 346/348 (M + NH4Br79/Br78, 33%), 329/331 (MH+ Br79/Br81, 18%), 236, 219, 189/191 [M - Fe(CO)3] 128, 111 (M - Fe(CO)3 - Br, 100%). HRCI m/z exact mass calculated for C9H5O5BrFe 328.8747; Found, 328.8745.
(
η
4
-6-Methyl-2-pyrone)tricarbonyliron (12). Rf = 0.22 (petroleum ether 40-60 ºC/ethyl acetate, 3:1). Mp 94-95 ºC (decomp.), orange
solid. IR (CH2Cl2) 2065, 1999, 1739, 1604 cm-1. δH (400 MHz, CDCl3) 1.91 (3 H, s, CH
3
), 2.94
(1 H, d, 3
J
HH = 5.9 Hz, H3), 5.45 (1 H, d, 3
J
HH = 3.3 Hz, H5), 6.15 (1 H, dd, 3
J
HH = 5.9 Hz, 3.3 Hz, H4). δC (100 MHz, CDCl3) 22.63 (CH3), 48.61 (C3), 76.41 (C5), 86.84 (C4), 104.19 (C6), 170.10 (C2), 207.62 (br, 3 × CO).
LRCI m/z 268 (M + NH4, 97%), 251 (MH+, 100%), 128, 111 [M - Fe(CO)3, 48%]. HRCI m/z exact mass calculated for C9H6O5Fe 250.9642; Found, 250.9639.
(
η
4
-5-Bromo-2-pyrone)tricarbonyliron (15). Rf = 0.44 (petroleum ether 40-60 ºC/ethyl acetate, 3:1). Mp 73-75 ºC (decomp.), yellow
solid. IR (CH2Cl2) 2066, 2002, 1740, 1604. δH (400 MHz, CDCl3) 2.95 (1 H, d, 3
J
HH = 6.3 Hz, H3), 5.68 (1H, d, 4
J
HH = 2.6 Hz, H6), 6.47 (1 H, dd, 3
J
HH = 6.3 Hz, 4
J
HH = 2.6 HZ, H4). δC (100 MHz, CDCl3) 45.47 (C3), 84.30 (C5), 90.40 (C6), 93.19 (C4), 159.44 (C2), 205.85 (br, 3 × CO).
LRCI m/z 332/334 (M + NH4 Br79/Br81, 100%), 315/317 (MH+ Br79/Br81, 45%), 247/249 (Br79/Br81), 114, 97 [M - Fe(CO)3 - Br], 90. HRCI m/z exact mass calculated for C8H3O5BrFe 314.8591; Found, 314.8586.
<A NAME="RD12203ST-22">22</A>
Knölker H.-J.
Baum E.
Foitzik H.
Goesmann P.
Gonser P.
Jones G.
Röttele H.
Eur. J. Inorg. Chem.
1998,
993 ; and references cited therein
<A NAME="RD12203ST-23">23</A>
Fleckner H.
Grevels F.-W.
Hess D.
J. Am. Chem. Soc.
1984,
106:
2027
<A NAME="RD12203ST-24A">24a</A>
Knölker H.-J.
Gonsor P.
Synlett
1992,
517
<A NAME="RD12203ST-24B">24b</A>
Knölker H.-J.
Gonsor P.
Jones PG.
Synlett
1994,
405
<A NAME="RD12203ST-25">25</A>
Alcock NW.
Richards CJ.
Thomas SE.
Organometallics
1991,
10:
231
<A NAME="RD12203ST-26">26</A>
Knölker H.-J.
Baum E.
Gonser P.
Rohde G.
Röttele H.
Organometallics
1998,
17:
3916
<A NAME="RD12203ST-27">27</A>
Ley SV.
Cox LR.
Meek G.
Chem. Rev.
1996,
96:
423
<A NAME="RD12203ST-28">28</A>
The crystal structures of 11 and 12 have been deposited to the Cambridge Crystallographic Database (UK). Deposit numbers
are CCDC 210379 and CCDC 210380, respectively.
Crystal data for 11. C9H5O5BrFe, M = 328.89, triclinic,
a = 6.562 (2), b = 7.091 (2), c = 12.565 (4) Å, U = 529.7 (3) Å3
, T = 113 (2) K, space group P-1, Z = 2, µ(Mo-Ka) = 1.546 mm-1, reflections measured 2902, unique 1858 (R
int = 0.0386) which were used in all calculations. The final wR(F
2) was 0.0992 (all data).
Crystal data for 12. C9H6O5Fe, M = 249.99, triclinic, a = 6.3565 (6), b = 7.5012 (7), c = 10.2161 (10) Å, U = 486.34 (8) Å3
, T = 113 (2) K, space group P-1, Z = 2, µ(Mo-Ka) = 1.546 mm-1, reflections measured 3864, unique 2702 (R
int = 0.0135) which were used in all calculations. The final wR(F
2) was 0.0760 (all data).
<A NAME="RD12203ST-29">29</A> Compounds 21a and 21b gave satisfactory characterisation data (IR, 1H, 13C NMR, LRCI and HRCI). Compound 21a was accompanied by a side-product: (η
4-4-(4′-methoxy-phenyl)-6-methyl-2-pyrone)Fe(CO)2PPh3. The 31P NMR signal (δ 72.51) is similar to that reported for (η
4-1,3-cyclohexadiene)Fe(CO)2PPh3 (δ 70.2), see:
Howell JAS.
Walton G.
Tirvengadum M.-C.
Squibb AD.
Palin MG.
McArdle P.
Cunningham D.
Goldschmidt Z.
Gottlieb H.
Strul G.
J. Organomet. Chem.
1991,
401:
91