References
<A NAME="RD20803ST-1">1</A>
Mihovilovic MD.
Müller B.
Stanetty P.
Eur. J. Org. Chem.
2002,
3711
<A NAME="RD20803ST-2">2</A>
Flitsch S.
Grogan G. In
Enzyme Catalysis in Organic Synthesis
Drauz K.
Waldmann H.
Wiley-VCH;
Weinheim:
2002.
p.1202-1245
<A NAME="RD20803ST-3A">3a</A>
Kelly DR.
Chim. Oggi
2000,
18:
33
<A NAME="RD20803ST-3B">3b</A>
Kelly DR.
Chim. Oggi
2000,
18:
52
<A NAME="RD20803ST-4">4</A>
Roberts SM.
Wan PWH.
J. Mol. Catal. B: Enzym.
1998,
4:
111
<A NAME="RD20803ST-5">5</A>
Willetts A.
Trends Biotechnol.
1997,
15:
55
<A NAME="RD20803ST-6">6</A>
Walsh CT.
Chen Y.-CJ.
Angew. Chem.
1988,
100:
342
<A NAME="RD20803ST-7">7</A>
Donoghue NA.
Trudgill PW.
Eur. J. Biochem.
1975,
60:
1
<A NAME="RD20803ST-8">8</A>
Iwaki H.
Hasegawa Y.
Teraoka M.
Tokuyama T.
Bergeron H.
Lau PCK.
Appl. Environ. Microbiol.
1999,
65:
5158
<A NAME="RD20803ST-9">9</A>
Cheng Q.
Thomas SM.
Kostichka K.
Valentine JR.
Nagarajan V.
J. Bacteriol.
2000,
182:
4744
<A NAME="RD20803ST-10">10</A>
Chen Y.-CJ.
Peoples OP.
Walsh CT.
J. Bacteriol.
1988,
170:
781
<A NAME="RD20803ST-11">11</A>
Iwaki H.
Hasegawa Y.
Lau PCK.
Wang S.
Kayser MM.
Appl. Environ. Microbiol.
2002,
68:
5681
<A NAME="RD20803ST-12">12</A>
Brzostowicz PC.
Gibson KL.
Thomas SM.
Blasko MS.
Rouviere PE.
J. Bacteriol.
2000,
182:
4241
<A NAME="RD20803ST-13">13</A>
Seelbach K.
Riebel B.
Hummel W.
Kula M.-R.
Tishkov VI.
Egorov HM.
Wandrey C.
Kragl U.
Tetrahedron Lett.
1996,
37:
1377
<A NAME="RD20803ST-14">14</A>
Gang C.
Kayser MM.
Mihovilovic MD.
Mrstik ME.
Martinez CA.
Stewart JD.
New J. Chem.
1999,
8:
827
<A NAME="RD20803ST-15">15</A> For another recombinant overexpression system for CHMO applied in whole-cell
biocatalysis see:
Doig SD.
O’Sullivan LM.
Patel S.
Ward JM.
Woodley JM.
Enzyme Microb. Technol.
2001,
28:
265
<A NAME="RD20803ST-16">16</A>
Donoghue NA.
Norris DB.
Trudgill PW.
Eur. J. Biochem.
1976,
63:
175
<A NAME="RD20803ST-17">17</A>
Stewart JD.
Curr. Org. Chem.
1998,
2:
195
<A NAME="RD20803ST-18">18</A>
Mihovilovic MD.
Müller B.
Kayser MM.
Stewart JD.
Stanetty P.
Synlett
2002,
703
<A NAME="RD20803ST-19">19</A>
Mihovilovic MD.
Chen G.
Wang S.
Kyte B.
Rochon F.
Kayser MM.
Stewart JD.
J. Org. Chem.
2001,
66:
733
<A NAME="RD20803ST-20">20</A>
Mihovilovic MD.
Müller B.
Kayser MM.
Stanetty P.
Synlett
2002,
700
<A NAME="RD20803ST-21">21</A>
Mihovilovic MD.
Müller B.
Schulze A.
Stanetty P.
Kayser MM.
Eur. J. Org. Chem.
2003,
2243
<A NAME="RD20803ST-22">22</A>
Mihovilovic MD.
Rudroff F.
Müller B.
Stanetty P.
Bioorg. Med. Chem. Lett.
2003,
13:
1479
<A NAME="RD20803ST-23">23</A>
Mihovilovic MD.
Müller B.
Kayser MM.
Stewart JD.
Fröhlich J.
Stanetty P.
Spreitzer H.
J. Mol. Catal. B: Enzym.
2001,
11:
349
<A NAME="RD20803ST-24">24</A> For the first dynamic kinetic resolution mediated by Baeyer-Villigerases see:
Berezina N.
Alphand V.
Furstoss R.
Tetrahedron: Asymmetry
2002,
13:
1953
<A NAME="RD20803ST-25">25</A>
Alphand V.
Furstoss R.
Tetrahedron: Asymmetry
1992,
3:
379
<A NAME="RD20803ST-26">26</A>
Taschner MJ.
Peddada L.
Cyr P.
Chen QZ.
Black DJ.
NATO ASI Ser., Ser. C
1992,
381:
347
<A NAME="RD20803ST-27">27</A>
Kelly DR.
Knowles CJ.
Mahdi JG.
Taylor IN.
Wright MA.
J. Chem. Soc., Chem. Commun.
1995,
729
<A NAME="RD20803ST-28">28</A>
Kelly DR.
Knowles CJ.
Mahdi JG.
Wright MA.
Taylor IN.
Hibbs DE.
Hursthouse MB.
Mish’al AK.
Roberts SM.
Wan PWH.
Grogan G.
Willets AJ.
J. Chem. Soc., Perkin Trans. 1
1995,
2057
<A NAME="RD20803ST-29">29</A>
Ottolina G.
Pasta P.
Carrea G.
Colonna S.
Dallavalle S.
Holland HL.
Tetrahedron: Asymmetry
1995,
6:
1375
<A NAME="RD20803ST-30">30</A>
Ottolina G.
Carrea G.
Colonna S.
Rückmann A.
Tetrahedron: Asymmetry
1996,
7:
1123
<A NAME="RD20803ST-31">31</A>
Yates P.
Hand ES.
Singh P.
Roy SK.
Still IWJ.
J. Org. Chem.
1969,
34:
4046
<A NAME="RD20803ST-32">32</A>
Sear RP.
Frenkel D.
J. Chem. Phys.
1996,
105:
10632
<A NAME="RD20803ST-33">33</A>
Yamoto M.
Kusunoki Y.
Chem. Pharm. Bull.
1981,
29:
1214
<A NAME="RD20803ST-34">34</A>
Feist F.
Justus Liebigs Ann. Chem.
1890,
257:
253
<A NAME="RD20803ST-35">35</A>
Sato M.
Kuroda H.
Kaneko C.
Furuya T.
J. Chem. Soc. Chem. Commun.
1994,
687
<A NAME="RD20803ST-36">36</A>
Typical procedure for the high pressure hydrogenation:
Precursor 5 dissolved in anhyd MeOH was hydrogenated with Pd/C (10%, 300 mg) in a Büchi steel
autoclave under H2 atmosphere (20 bar) for 2 d. The solution was filtered through a bed of Celite® and MeOH was evaporated. In the case of partial ketal formation (6), the crude material was treated with a 5:1 mixture of THF and 0.1 N HCl at r.t.
overnight. The solution was washed with NaHCO3, extracted with CH2Cl2, dried over Na2SO4, filtered, and concentrated in vacuo. Pure 1 was obtained after Kugelrohr distillation or flash column chromatography.
cis
-Tetrahydro-2,6-dimethyl-4
H
-pyran-4-one (1a): 42% yield, colorless liquid, bp 50 °C/12mbar (Kugelrohr),
1H NMR (200 MHz, CDCl3): δ = 1.35 (d, J = 6 Hz, 6 H), 2.10-2.45 (m, 4 H), 3.61-3.80 (m, 2 H),
13C NMR(50 MHz, CDCl3): δ = 21.9 (q), 48.8 (t), 72.9 (d), 207.2 (s).
cis
-Tetrahydro-2,6-diethyl-4
H
-pyran-4-one (
1b): 57% yield, colorless liquid, bp 81-83 °C/11mbar (Kugelrohr).
1H NMR (200 MHz, CDCl3): δ = 1.00 (t, J = 7 Hz, 6 H), 1.43-1.81 (m, 4 H), 2.11-2.45 (m, 4 H), 3.39-3.55 (m, 2 H).
13C NMR (50 MHz, CDCl3): δ = 9.6 (q), 29.3 (t), 47.5 (t), 78.2 (d), 207.7 (s).
cis
-Tetrahydro-2,6-dipropyl-4
H
-pyran-4-one (
1c): 56% yield, beige oil.
1H NMR (200 MHz, CDCl3): δ = 0.90 (t, J = 6 Hz, 6 H), 1.30-1.80 (m, 8 H), 2.15-2.40 (m, 4 H), 3.60-3.75 (m, 2 H).
13C NMR (50M Hz, CDCl3): δ = 14.3 (q), 19.0 (t), 38.9 (t), 48.4 (t), 77.1 (d), 207.9 (s).
cis
-Tetrahydro-2,6-bis-(1-methylethyl)-4
H
-pyran-4-one (
1d): 71% yield, colorless oil, bp: 90-95 °C/0.1 mbar (Kugelrohr).
1H NMR (200 MHz, CDCl3): δ = 0.90, 0.95 (2 × d, J = 6 Hz, 2 × 6 H), 1.75 (oct, J = 6 Hz, 2 H), 2.10-2.45 (m, 4 H), 3.20-3.30 (m, 2 H).
13C NMR (50 MHz, CDCl3): δ = 18.2 (t), 33.4 (d), 45.3 (t), 81.7 (d), 208.9 (s).
cis
-Tetrahydro-2,6-dibutyl-4
H
-pyran-4-one (
1e): 35% yield, beige oil.
1H NMR (200 MHz, CDCl3): δ = 0.90-1.00 (m, 6 H), 1.20-1.80 (m, 12 H), 2.10-2.40 (m, 4 H), 3.40-3.55 (m,
2 H).
13C NMR (50 MHz, CDCl3): δ = 14.4 (q), 22.9 (t), 27.9 (t), 36.5 (t), 48.8 (t), 77.4 (d), 208.4 (s).
<A NAME="RD20803ST-37">37</A>
CH2Cl2 was required to achieve efficient extraction of lactones 2a-c from the fermentation broth.
<A NAME="RD20803ST-38">38</A>
Bar R.
Trends Biotechnol.
1989,
7:
2
<A NAME="RD20803ST-39">39</A>
Taschner MJ.
Black DJ.
J. Am. Chem. Soc.
1988,
110:
6892
<A NAME="RD20803ST-40">40</A>
Physical and spectroscopic data of lactones 2:
cis
-2,7-Dimethyl-1,4-dioxepan-5-one (
2a): colorless oil.
1H NMR (400 MHz, CDCl3): δ = 1.18 (d, J = 6 Hz, 3 H), 1.29 (d, J = 6 Hz, 3 H), 2.67 (dd, J = 14 Hz, ca 1 Hz, 1 H), 2.92 (dd, J = 14 Hz, 5 Hz, 1 H), 3.79-3.99 (m, 2 H), 4.02 (dd, J = 13 Hz, ca 1 Hz, 1 H), 4.20 (dd, J = 14 Hz, 6 Hz, 1 H).
13C NMR (100 MHz, CDCl3): δ = 18.6 (q), 23.5 (q), 45.6 (t), 71.0 (d), 74.4 (t). 75.5 (d), 173.8 (s).
cis
-2,7-Diethyl-1,4-dioxepan-5-one (
2b): colorless oil.
1H NMR (400 MHz, CDCl3): δ = 0.99 (t, J = 9 Hz, 3 H), 1.00 (t, J = 9 Hz, 3 H), 1.40-1.75 (m, 4 H), 2.69 (dd, J = 16 Hz, ca 1 Hz, 1 H), 2.90 (dd, J = 16 Hz, 10 Hz, 1 H), 3.50-3.67 (m, 2 H), 4.08 (dd, J = 13 Hz, ca 1 Hz, 1 H), 4.21 (dd, J = 13 Hz, 6 Hz, 1 H).
13C NMR (100 MHz, CDCl3): δ = 9.8 (q), 9.9 (q), 25.5 (t), 30.0 (t), 43.8 (t), 73.4 (t), 75.5 (d), 80.3 (d),
173.6 (s).
cis
-2,7-Dipropyl-1,4-dioxepan-5-one (
2c): beige colored oil.
1H NMR (400 MHz, CDCl3): δ = 0.90 (t, J = 7 Hz, 6 H), 1.20-1.60 (m, 8 H), 2.65 (d, J = 13 Hz, 1 H), 2.90 (dd, J = 13 Hz, 8 Hz, 1 H), 3.55-3.70 (m, 4 H), 4.05 (d, J = 13 Hz, 1 H) 4.25 (dd, J = 13 Hz, 8 Hz, 1 H).
13C NMR (100 MHz, CDCl3): δ = 13.6 (q), 18.6 (t), 34.2 (t), 38.9 (t), 44.2 (t), 73.7 (t), 73.9 (d), 78.7
(d), 173.5 (s).