References
<A NAME="RG18403ST-1">1</A> Transition Metal Catalyzed Reactions in Organic Synthesis, VI. For part V, see:
Groth U.
Richter N.
Kalogerakis A.
Eur. J. Org. Chem.
2003, in print
Reviews:
<A NAME="RG18403ST-2A">2a</A>
Vollhardt KPC.
Angew. Chem., Int. Ed. Engl.
1984,
23:
539 ; Angew. Chem. 1984, 96, 525
<A NAME="RG18403ST-2B">2b</A>
Schore NE.
Comprehensive Organic Synthesis
Vol. 5:
Trost BM.
Fleming I.
Pattenden G.
Pergamon;
Oxford:
1991.
p.1129-1162
<A NAME="RG18403ST-2C">2c</A>
Malaska MJ.
Vollhardt KPC.
Advances in Natural Product Chemistry
Atta-ur Rahman HEJ.
Taylor & Francis;
London:
1992.
p.53-63
<A NAME="RG18403ST-2D">2d</A>
Shore NE.
Chem. Rev.
2000,
100:
1081
<A NAME="RG18403ST-2E">2e</A>
Trost BM.
Angew. Chem., Int. Ed. Engl.
1995,
34:
259 ; Angew. Chem.
1995, 107, 285
<A NAME="RG18403ST-2F">2f</A>
Lautens M.
Klute W.
Tam W.
Chem. Rev.
1996,
96:
49
<A NAME="RG18403ST-2G">2g</A>
Malacria M.
Chem. Rev.
1996,
96:
289
<A NAME="RG18403ST-2H">2h</A>
Ojima I.
Tzamarioudaki M.
Li Z.
Donovan RJ.
Chem. Rev.
1996,
96:
635
<A NAME="RG18403ST-2I">2i</A>
Saito S.
Yamamoto Y.
Chem. Rev.
2000,
100:
2901
<A NAME="RG18403ST-2J">2j</A>
Hartley RC.
Caldwell ST.
J. Chem. Soc., Perkin Trans. 1
2000,
477
<A NAME="RG18403ST-2K">2k</A>
Malacria M.
Aubert C.
Renaud JL. In Science of Synthesis: Houben-Weyl, Methods of Molecular Transformations
Vol. 1:
Lautens M.
Georg Thieme Verlag;
Stuttgart:
2001.
p.439-530
<A NAME="RG18403ST-3A">3a</A>
Sternberg ED.
Vollhardt KPC.
J. Am. Chem. Soc.
1980,
102:
4839
<A NAME="RG18403ST-3B">3b</A>
Sternberg ED.
Vollhardt KPC.
J. Org. Chem.
1984,
49:
1564
<A NAME="RG18403ST-3C">3c</A>
Dunach E.
Halterman RL.
Vollhardt KPC.
J. Am. Chem. Soc.
1985,
107:
1664
<A NAME="RG18403ST-3D">3d</A>
Slowinski F.
Aubert C.
Malacria M.
Tetrahedron Lett.
1999,
40:
707
<A NAME="RG18403ST-3E">3e</A>
Slowinksi F.
Aubert C.
Malacria M.
Eur. J. Org. Chem.
2001,
3941
<A NAME="RG18403ST-4A">4a</A>
Gadek TR.
Vollhardt KPC.
Angew. Chem., Int. Ed. Engl.
1981,
20:
802 ; Angew. Chem. 1981, 93, 801
<A NAME="RG18403ST-4B">4b</A>
Malacria M.
Vollhardt KPC.
J. Org. Chem.
1984,
49:
5010
<A NAME="RG18403ST-4C">4c</A>
Johnson EP.
Vollhardt KPC.
J. Am. Chem. Soc.
1991,
113:
381
<A NAME="RG18403ST-4D">4d</A>
Germanas J.
Aubert C.
Vollhardt KPC.
J. Am. Chem. Soc.
1991,
113:
4006
<A NAME="RG18403ST-4E">4e</A>
Llerena D.
Buisine O.
Aubert C.
Malacria M.
Tetrahedron
1998,
54:
9373
<A NAME="RG18403ST-4F">4f</A>
Eichberg MJ.
Dorta RL.
Lamottke K.
Vollhardt KPC.
Org. Lett.
2000,
2:
2479
<A NAME="RG18403ST-4G">4g</A>
Eichberg MJ.
Dorta RL.
Grotjahn DB.
Lamottke K.
Schmidt M.
Vollhardt KPC.
J. Am. Chem. Soc.
2001,
123:
9324
<A NAME="RG18403ST-4H">4h</A>
Slowinski F.
Aubert C.
Malacria M.
J. Org. Chem.
2003,
68:
378
<A NAME="RG18403ST-5">5</A>
Chang CA.
King JA.
Vollhardt KPC.
J. Chem. Soc., Chem. Commun.
1981,
53
<A NAME="RG18403ST-6A">6a</A> For similar observations see:
Bradley A.
Motherwell WB.
Ujjainwalla F.
Chem. Commun.
1999,
917 ; and references cited therein
<A NAME="RG18403ST-6B">6b</A>
Phansavath P.
Aubert C.
Malacria M.
Tetrahedron Lett.
1998,
39:
1561
<A NAME="RG18403ST-7A">7a</A>
Stork G.
Keitz PF.
Tetrahedron Lett.
1989,
6981
<A NAME="RG18403ST-7B">7b</A>
Tamao K.
Kobayashi K.
Ito Y.
Synlett
1992,
539
<A NAME="RG18403ST-7C">7c</A> Reviews:
Bols M.
Skrydstrup T.
Chem. Rev.
1995,
95:
1253
<A NAME="RG18403ST-7D">7d</A>
Fensterbank L.
Malacria M.
Siebuirth SM.
Synthesis
1997,
813
<A NAME="RG18403ST-7E">7e</A>
Gauthier DRJ.
Zandi KS.
Shea KJ.
Tetrahedron
1998,
54:
2289
<A NAME="RG18403ST-7F">7f</A>
Skrydstrup T. In Science of Synthesis: Houben-Weyl Methods of Molecular Transformations
Vol. 4:
Fleming I.
Georg Thieme Verlag;
Stuttgart:
2001.
p.269-291
<A NAME="RG18403ST-8">8</A> (-)-(1S)-2-Cyclohexen-1-ol (17) was prepared by enantioselective deprotonation of cyclohexene oxide according to
Asami’s protocol:
Asami M.
Bull. Chem. Soc. Jpn.
1990,
63:
721
<A NAME="RG18403ST-9">9</A>
Pohl E.
Herbst-Irmer R.
Groth U.
Eckenberg P.
Acta Cryst.
1995,
C51:
891
<A NAME="RG18403ST-10">10</A>
Fu PP.
Harvey RG.
Chem. Rev.
1978,
78:
317
<A NAME="RG18403ST-11">11</A>
Kalman JR.
Pinkey JT.
Sternhall S.
Tetrahedron Lett.
1972,
5369
<A NAME="RG18403ST-12">12</A>
Typical Experimental Procedure:
To a solution of 1-trimethylsilyl-octa-1,7-diyne (10) (1.10 g, 6.2 mmol) in THF (30 mL) was added a solution of n-BuLi in hexane (1.6 M, 4.05 mL, 6.5 mmol) at -78 °C within 20 min. The reaction mixture
was allowed to warm to -30 °C and stirring was continued for 45 min. A solution of
Me2Si(NEt2)Cl (DDSCl) (1.12 g, 6.8 mmol) in THF (5 mL) was added at -78 °C and the reaction
mixture was allowed to warm to r.t. within 12 h. A solution of the allylic alcohol
12 or 17 (7.4 mmol) in THF (3 mL) was added at -78 °C, the reaction mixture was allowed to
warm to r.t. and the reaction was monitored by TLC analysis. When none of the temporarily
formed enyne diethyl amino dimethyl silane was detectable by TLC analysis (after ca
12 h) the solvent was removed in vacuo (35 °C, 12 torr). The residue was dissolved
in Et2O (10 mL) and the inorganic components were removed by filtration over silica gel
(deactivated by silylation with HMDS) or celite. The solvent was removed in vacuo
(20 °C, 12 torr) and the residue was purified by bulb-to-bulb distillation to afford
enediynes 13 or 18.
A solution of enediyne 13 or 18 (1.1 mmol) in iso-octane (30 mL) was cooled to -70 °C and the apparatus was evacuated for 15 min (0.5
torr). The flask was allowed to warm to r.t. and Ar was allowed to fill up the apparatus.
The solution was cooled again to -70 °C and the procedure was repeated twice as described
above. CpCo(CO)2 (0.41 g, 2.3 mmol) was added and the reaction mixture was refluxed under irradiation
with visible light until no starting material could be detected by TLC analysis (afte
ca 2 h). The reaction mixture was cooled down to r.t. and volatile components were
removed in vacuo (30 °C/0.1 torr). The red brown residue was dissolved in degassed
pentane (30 mL) and filtered through celite under an Ar atmosphere. Ferrous chloride
hexahydrate (1.54 g, 5.7 mmol) was dissolved in MeCN (12 mL) and the solution cooled
to -30 °C. At this temperature the filtrate was added under stirring and stirring
was continued for 30 min. The reaction mixture was cooled to -70 °C and the pentane
layer was removed from the frozen MeCN layer. The MeCN layer was allowed to warm to
-30 °C, pentane (20 mL) was added and the procedure was repeated three times as described
above. The pentane layers were combined, the solvent was removed in vacuo (30 °C,
12 Torr) and the residue purified by chromatography on silica gel with Et2O-petroleum ether-Et3N (1:20:0.01) to afford dienes 14 or 19.
Analytical data of selected compounds:
Compound 13a: Rf = 0.44 (Et2O-petroleum ether, 1:20); bp 110-120 °C (0.05 torr). IR(film): 2160 (C≡CSi), 1635
(C=C), 1240 (SiC) cm-1. 1H NMR (200 MHz, CDCl3): δ = 0.12 [s, 9 H, Si(CH3)3], 0.22 [s, 6 H, Si(CH3)2O], 1.54-1.68 (m, 4 H, CH2), 2.16-2.22 (m, 4 H, CH2C≡C), 4.21 (dt, 3
J = 5.0 Hz, 4
J = 1.3 Hz, 2 H, CH2O), 5.09 (ddt, J
cis = 10.0 Hz,
2
J = 4
J = 1.3 Hz, 1 H, CH=CH2, H-cis), 5.25 (ddt, J
trans = 17.0 Hz, 2
J = 4
J = 1.3 Hz, 1 H, CH=CH2, H-trans), 5.93 (ddt,
J
trans = 17.0 Hz, J
cis = 10.0 Hz, 3
J = 5.0 Hz, 1 H, CH=CH2). 13C NMR (50.3 MHz, CDCl3): δ = 0.11 [Si(CH3)3], 0.21 [Si(CH3)2O], 19.21, 19.32 (CH2), 27.40, 27.56 (CH2C≡C), 64.28 (CH2O), 82.46, 84.72 (C≡CSi), 106.82, 107.55 (C≡CSi), 114.85 (CH=CH2), 136.80 (CH=CH2). MS (70 eV): m/z (%) = 277 (2) [M+ - CH3), 133 (90) [C8H9Si+], 73(100) [C3H9Si+]. Anal. Calcd for C16H28OSi2 (292.6): C, 65.68; H, 9.64. Found: C, 65.76; H, 9.51.
Compound
rac
-14a: Rf = 0.19 (Et2O-petroleum ether, 1:20); mp 74 °C. IR(film): 1620 (C=C), 1240 (SiC) cm-1. 1H NMR (200 MHz, CDCl3): δ = 0.14 [s, 9 H, Si(CH3)3], 0.26, 0.28 [2 × s, 6 H, Si(CH3)2O], 1.34-1.63 (m, 3 H, CH2CH2), 2.05-2.24 (m, 2 H, CH2C=C), 2.26-2.52 (m, 3 H, CH2C=C), 2.58-2.76 (m, 1 H, CHC=C), 3.40 (dd, 2
J = 3
J = 9.5 Hz, 1 H, SiMe2OCH2), 4.27 (dd, 2
J = 9.5 Hz, 3
J = 7.6 Hz, 1 H, SiMe2OCH2). 13C NMR (50.3 MHz, CDCl3): δ = -0.56, 0.16 [Si(CH3)2O], 0.33 [Si(CH3)3], 24.43, 24.60 29.73, 31.31, 33.11 (CH2), 40.06 (CHC=C), 72.40, (CH2O), 131.02, 135.37, 143.25, 145.49 (C=C). MS (70 eV): m/z (%) = 292 (6) [M+], 73 (70) [C3H9Si+], 57 (100) [C3H5O+]. Anal. Calcd for C16H28OSi2 (292.6): C, 65.68; H, 9.64. Found: C, 65.85; H 9.55.
Compound 18: Rf = 0.47 (Et2O-petroleum ether, 1:20). bp 130-140 °C (0.005 torr). [α]20
D = -30.6 (c 1.0, CHCl3). IR(film): 3005 (CH, alkene), 2160 (C≡CSi), 1640 (C=C), 1240 (SiC) cm-1. 1H NMR (200 MHz, CDCl3): δ = 0.12 [s, 9 H, Si(CH3)3], 0.22 [s, 6 H, Si(CH3)2O], 1.46-2.03 (m, 10 H, CH2), 2.18-2.30 (m, 4 H, CH2C≡C), 4.31-4.41 (m, 1 H, CHO), 5.62-5.82 (m, 2 H, CH=CH). 13C NMR (50.3 MHz, CDCl3): δ = 0.10 [Si(CH3)3], 0.83, 0.89 [Si(CH3)2O], 19.21, 19.31, 24.92, 27.42, 27.55, 31.95 (CH2), 67.08 (OCH), 83.17, 84.68 (C≡CSi), 106.84, 107.08 (C≡CSi), 129.53, 130.44 (CH=CH).
MS (70 eV): m/z (%) = 332 (1.1), [M+], 133(42) [C8H9Si+], 73(100) [C3H9Si+]. Anal. Calcd for C19H32OSi2 (332.6): C, 68.61; H, 9.70. Found: C, 68.58; H, 9.75.
Compound 19: Rf = 0.22 (Et2O-petroleum ether, 1:20). [α]20
D = -40.2 (c 0.8, CHCl3). IR(film): 1620 (C=C), 1240 (SiC) cm-1. 1H NMR (200 MHz, CDCl3): δ = 0.14 [s, 9 H, Si(CH3)3], 0.21, 0.35 [s, 6 H, Si(CH3)2O], 0.89 (m, 1 H, C-5), 0.99 (m, 1 H, C-4), 1.14 (m, 1 H, C-3), 1.16-1.24 (m, 1 H,
C-5), 1.38-1.57 (m, 3 H, 1 H of C-8 and C-9, 1 H of C-4), 1.65-1.84 (m, 2 H, C-8 and
C-9), 1.90-2.02 (m, 1 H, C-3), 2.13-2.38 (m, 4 H, 1 H of C-7, 2 H of C-10 and 1 H
of C-5a), 2.57 (m, 1 H, C-7), 2.72 (m, 1 H, C-5b), 4.19 (m, 1 H, C-2a). 13C NMR (50.3 MHz, CDCl3): δ = 0.00, 2.40 [Si(CH3)2O], 0.29 [Si(CH3)3], 22.16 (C-4), 23.78, 23.96 (C-8 and C-9), 26.72 (C-5), 31.05 (C-7), 32.46 (C-10),
33.57 (C-3), 36.86 (C-5a), 44.53 (C-5b), 77.63 (C-2a), 132.43, 134.72, 142.60, 143.52
(C=C). MS (70 eV): m/z (%) = 332 (61) [M+], 258(53) [C17H26Si+], 184(90) [C14H18Si+], 73 (100) [C3H9Si+]. Anal. Calcd for C19H32OSi2 (332.6): C, 68.61; H, 9.70. Found: C, 68.54; H, 9.63.
Reviews:
<A NAME="RG18403ST-13A">13a</A>
Krohn K.
Angew. Chem., Int. Ed. Engl.
1986,
25:
790 ; Angew. Chem. 1986, 98, 788
<A NAME="RG18403ST-13B">13b</A>
Krohn K.
Tetrahedron
1990,
46:
291
<A NAME="RG18403ST-13C">13c</A>
Cambie RC.
Rutledge PS.
Woodgate PD.
Aust. J. Chem.
1992,
45:
483
<A NAME="RG18403ST-13D">13d</A>
Lown JW.
Chem. Soc. Rev.
1993,
22:
165