Abstract
In algae different types of plastids are known, which vary in pigment content and
ultrastructure, providing an opportunity to study their evolutionary origin. One interesting
feature is the number of envelope membranes surrounding the plastids. Red algae, green
algae and glaucophytes have plastids with two membranes. They are thought to originate
from a primary endocytobiosis event, a process in which a prokaryotic cyanobacterium
was engulfed by a eukaryotic host cell and transformed into a plastid. Several other
algal groups, like euglenophytes and heterokont algae (diatoms, brown algae, etc.),
have plastids with three or four surrounding membranes, respectively, probably reflecting
the evolution of these organisms by so-called secondary endocytobiosis, which is the
uptake of a eukaryotic alga by a eukaryotic host cell. A prerequisite for the successful
establishment of primary or secondary endocytobiosis must be the development of suitable
protein targeting machineries to allow the transport of nucleus-encoded plastid proteins
across the various plastid envelope membranes. Here, we discuss the possible evolution
of such protein transport systems. We propose that the secretory system of the respective
host cell might have been the essential tool to establish protein transport into primary
as well as into secondary plastids.
Key words
Protein transport - chloroplast - secondary endocytobiosis.
References
- 1
Apt K. E., Hoffman N. E., Grossman A. R..
The gamma subunit of R-phycoerythrin and its possible mode of transport into the plastid
of red algae.
J. Biol. Chem..
(1993);
268
16208-16215
- 2
Apt K. E., Zaslavkaia L., Lippmeier J. C., Lang M., Kilian O., Wetherbee R., Grossman A. R.,
Kroth P. G..
In vivo characterization of diatom multipartite plastid targeting signals.
J. Cell Sci..
(2002);
115
4061-4069
- 3
Bhaya D., Grossman A. R..
Targeting proteins to diatom plastids involves transport through an endoplasmic reticulum.
Mol. Gen. Genet..
(1991);
229
400-404
- 4
Blanchard J. L., Lynch M..
Organellar genes - why do they end up in the nucleus?.
Trends Genet..
(2000);
16
315-320
- 5
Bodył A..
How are plastid proteins of the apicomplexan parasites imported? A hypothesis.
Acta Protozool..
(1997);
38
31-37
- 6
Bodył A..
Is protein import into plastids with four-membrane envelopes dependent on two Toc
systems in tandem?.
Plant Biology.
(2002);
4
423-431
- 7
Bouck G. B..
Fine structure and organelle associations in brown algae.
J. Cell Biol..
(1965);
26
523-537
- 8
Bruce B. D..
Chloroplast transit peptides: structure, function and evolution.
Trends Cell Biol..
(2000);
10
440-447
- 9
Cavalier-Smith T..
The origins of plastids.
Biol. J. Linn. Soc..
(1982);
17
289-306
- 10 Cavalier-Smith T..
The kingdom Chromista: origin and systematics. Round, F. E. and Chapman, D. J., eds. Progress in Phycological Research. Bristol;
Biopress Ltd. (1986): 309-347
- 11 Cavalier-Smith T..
Membrane heredity, symbiogenesis, and the multiple origins of algae. Arai, R., Kato, M., and Doi, Y., eds. Biodiversity and Evolution. Tokyo; National
Science Museum Foundation (1995): 75-114
- 12
Cavalier-Smith T..
Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate,
and sporozoan plastid origins and the eukaryote family tree.
J. Euk. Microbiol..
(1999);
46
347-366
- 13
Cavalier-Smith T..
Membrane heredity and early chloroplast evolution.
Trends Plant Sci..
(2000);
5
174-182
- 14
Cavalier-Smith T..
Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery
in eukaryote-eukaryote chimaeras (meta-algae).
Phil. Trans. R. Soc. Lond. B..
(2002);
358
109-134
- 15
Chen X. J., Schnell D. J..
Protein import into chloroplasts.
Trends Cell Biol..
(1999);
9
222-227
- 16
Delwiche C. F..
Tracing the thread of plastid diversity through the tapestry of life.
Amer. Natural..
(1999);
154
S164-S177
- 17
Delwiche C. F., Palmer J. D..
The origin of plastids and their spread via secondary symbiosis.
Plant Syst. Evol..
(1997);
11
53-86
- 18
DeRocher A., Hagen C. B., Froehlich J. E., Feagin J. E., Parsons M..
Analysis of targeting sequences demonstrates that trafficking to the Toxoplasma gondii plastid branches off the secretory system.
J. Cell Sci..
(2000);
113
3969-3977
- 19
Doolittle W. F..
A paradigm gets shifty.
Nature.
(1998);
392
15-16
- 20
Douglas S. E..
Plastid evolution: origins, diversity, trends.
Curr. Op. Genet. Develop..
(1998);
8
655-661
- 21
Douglas S., Zauner S., Fraunholz M., Beaton M., Penny S., Deng L.-T., Wu X., Reith M.,
Cavalier-Smith T., Maier U.-G..
The highly reduced genome of an enslaved algal nucleus.
Nature.
(2001);
410
1091-1096
- 22
Durnford D. G., Deane J. A., Tan S., McFadden G. I., Gantt E., Green B. R..
A phylogenetic assessment of the eukaryotic light-harvesting antenna proteins, with
implications for plastid evolution.
J. Mol. Evol..
(1999);
48
59-68
- 23
Gibbs S. P..
The chloroplasts of Euglena may have evolved from symbiotic green algae.
Can. J. Bot..
(1978);
56
2883-2889
- 24
Gibbs S. P..
The route of entry of cytoplasmically synthesized proteins into chloroplasts of algae
possessing chloroplast ER.
J. Cell Sci..
(1979);
35
253-266
- 25
Gibbs S. P..
The chloroplast endoplasmic reticulum: structure, function, and evolutionary significance.
Int. Rev. Cytol..
(1981);
72
49-99
- 26
Gillot M. A., Gibbs S. P..
The cryptomonad nucleomorph: its ultrastructure and evolutionary significance.
J. Phycol..
(1980);
16
558-568
- 27
Gilson P. R., Maier U. G., McFadden G. I..
Size isn't everything: lessons in gentic miniturization from nucleomorphs.
Curr. Op. Gen. Dev..
(1997);
7
800-806
- 28
Häuber M. M., Müller S. B., Speth V., Maier U. G..
How to evolve a complex plastid? - A hypothesis.
Bot. Acta.
(1994);
107
383-386
- 29
Heins L., Collinson I., Soll J..
The protein translocation apparatus of chloroplast envelopes.
Trends Plant Sci..
(1998);
3
56-61
- 30
Heins L., Soll J..
Chloroplast biogenesis: Mixing the prokaryotic and the eukaryotic?.
Curr. Biol..
(1998);
8
R215-R217
- 31
Heins L., Mehrle A., Hemmler R., Wagner R., Kuchler M., Hormann F., Sveshnikov D.,
Soll J..
The preprotein conducting channel at the inner envelope membrane of plastids.
EMBO J..
(2002);
21
2616-2625
- 32
Hopkins J., Fowler R., Krishna S., Wilson I., Mitchell G., Bannister L..
The plastid in Plasmodium falciparum asexual blood stages: a three-dimensional ultrastructural analysis.
Protist.
(1999);
150
283-292
- 33
Inagaki J., Fujita Y., Hase T., Yamamoto Y..
Protein translocation within chloroplast is similar in Euglena and higher plants.
Biochem. Biophys. Res. Commun..
(2000);
277
436-442
- 34
Ishida K., Cavalier-Smith T., Green B. R..
Endomembrane structure and the chloroplast protein targeting pathway in Heterosigma akashiwo (Raphidophyceae, Chromista).
J. Phycol..
(2000);
36
1135-1144
- 35
Jakowitsch J., Neumann-Spallart C., Ma Y., Schenk H. E. A., Bohnert H. J., Löffelhardt W..
In vitro import of pre-ferredoxin-NADP-oxidoreductase from Cyanophora paradoxa into cyanelles and into pea chloroplasts.
FEBS Lett..
(1996);
381
153-155
- 36
Joyard J., Teyssier E., Miege C., Berny-Seigneurin D., Marechal E., Block M. A., Dorne A. J.,
Rolland N., Ajlani G., Douce R..
The biochemical machinery of plastid envelope membranes.
Plant Physiol..
(1998);
118
715-723
- 37
Jürgens U. J., Weckesser J..
Carotenoid-containing outer membrane of Synechocystis sp. strain PCC6714.
J. Bacteriol..
(1985);
164
384-389
- 38
Kadowaki K. I., Kubo N., Ozawa K., Hirai A..
Targeting presequence acquisition after mitochondrial gene transfer to the nucleus
occurs by duplication of existing targeting signals.
EMBO J..
(1996);
15
6652-6661
- 39
Keegstra K., Cline K..
Protein import and routing systems of chloroplasts.
Plant Cell.
(1999);
11
557-570
- 40
Kindle K. L., Lawrence S. D..
Transit peptide mutations that impair in vitro and in vivo chloroplast protein import do not affect accumulation of the gamma-subunit of chloroplast
ATPase.
Plant Physiol..
(1998);
116
1179-1190
- 41
Köhler R. A., Cao J., Zipfel W. R., Webb W. W., Hanson M. R..
Exchange of protein molecules through connections between higher plant plastids.
Science.
(1997 a);
276
2039-2042
- 42
Köhler S., Delwiche C. F., Denny P. W., Tilney L. G., Webster P., Wilson R. J. M.,
Palmer J. D., Roos D. S..
A plastid of probable green algal origin in apicomplexan parasites.
Science.
(1997 b);
275
1485-1489
- 43
Kroth P., Strotmann H..
Diatom plastids: secondary endocytobiosis, plastid genome and protein import.
Physiol. Plant..
(1999);
107
136-141
- 44
Lang M., Apt K. E., Kroth P. G..
Protein transport in “complex” diatom plastids utilizes two different targeting domains.
J. Biol. Chem..
(1998);
273
30973-30978
- 45
Long M., de Souza S. J., Rosenberg C., Gilbert W..
Exon shuffling and the origin of the mitochondrial targeting function in plant cytochrome
c1 precursor.
Proc. Natl. Acad. Sci. USA.
(1996);
93
7727-7731
- 46
Martin W., Herrmann R. G..
Gene transfer from organelles to the nucleus: How much, what happens, and why?.
Plant Physiol..
(1998);
118
9-17
- 47
Martin W., Müller M..
The hydrogen hypothesis for the first eukaryote.
Nature.
(1998);
392
37-41
- 48
Martin W., Stoebe B., Goremykin V., Hansmann S., Hasegawa M., Kowallik K. V..
Gene transfer to the nucleus and the evolution of chloroplasts.
Nature.
(1998);
393
162-165
- 49
McFadden G. I..
Plastids and protein targeting.
J. Euk. Microbiol..
(1999);
46
339-346
- 50
McFadden G. I..
Primary and secondary endosymbiosis and the origin of plastids.
J. Phycol..
(2001);
37
951-959
- 51
McFadden G. I., Gilson P. R., Hofmann C. J. B., Adcock G. J., Maier U.-G..
Evidence that an amoeba aquired a chloroplast by retaining part of an engulfed eukaryotic
alga.
Proc. Natl. Acad. Sci. USA.
(1994);
91
3690-3694
- 52
McFadden G. I., Roos D. S..
Apicomplexan plastids as drug targets.
Trends Microbiol..
(1999);
7
328-333
- 53
Melkonian M..
Systematics and evolution of algae.
I. Genomics meets phylogeny. Progr. Botany.
(2001);
62
340-382
- 54
Muchhal U. S., Schwartzbach S. D..
Characterization of a Euglena gene encoding a polyprotein precursor to the light-harvesting chlorophyll a/b-binding
protein of photosystem II.
Plant Mol. Biol..
(1992);
18
287-299
- 55
Palmer J. D..
Organelle genomes: going, going, gone!.
Science.
(1997);
275
790-791
- 56
Park H., Eggink L. L., Roberson R. W., Hoober J. K..
Transfer of proteins from the chloroplast to vacuoles in Chlamydomonas reinhardtii (Chlorophyta): A pathway for degradation.
J. Phycol..
(1999);
35
528-538
- 57
Rassow J., Pfanner N..
The protein import machinery of the mitochondrial membranes.
Traffic.
(2000);
1
457-464
- 58
Reumann S., Davila-Aponte J., Keegstra K..
The evolutionary origin of the protein-translocating channel of chloroplastidic envelope
membranes: identification of a cyanobacterial homolog.
Proc. Natl. Acad. Sci..
(1999);
96
784-789
- 59
Reumann S., Keegstra K..
The endosymbiotic origin of the protein import machinery of chloroplastic envelope
membranes.
Trends Plant Sci..
(1999);
4
302-307
- 60
Robinson C., Hynds P. J., Robinson D., Mant A..
Multiple pathways for the targeting of thylakoid proteins in chloroplasts.
Plant Mol. Biol..
(1998);
38
209-221
- 61 Schnepf E..
From prey via endosymbiont to plastid: comparative studies in dinoflagellates. Lewin, R. A., ed. Origins of Plastids. New York; Chapman & Hall (1993): 53-76
- 62
Schwartzbach S. D., Osafune T., Löffelhardt W..
Protein import into cyanelles and complex chloroplasts.
Plant Mol. Biol..
(1998);
38
247-263
- 63
Smith-Johannsen H., Gibbs S. P..
Effects of chloramphenicol on chloroplast and mitochondrial ultrastructure in Ochromonas danica.
.
J. Cell Biol..
(1972);
52
598-614
- 64
Steiner J. M., Löffelhardt W..
Protein import into cyanelles.
Trends Plant Sci..
(2002);
7
72-77
- 65
Su Q., Schumann P., Schild C., Boschetti A..
A processing intermediate of a stromal chloroplast import protein in Chlamydomonas.
.
Biochem. J..
(1999);
344
391-395
- 66
Sulli C., Fang Z. W., Muchhal U. S., Schwartzbach S. D..
Topology of Euglena chloroplast protein precursors within endoplasmic reticulum to golgi to chloroplast
transport vesicles.
J. Biol. Chem..
(1999);
274
457-463
- 67
Vothknecht U. C., Soll J..
Protein import: The hitchhikers guide into chloroplasts.
Biol. Chem..
(2000);
381
887-897
- 68
Waller R. F., Reed M. B., Cowman A. F., and McFadden G. I..
Protein trafficking to the plastid of Plasmodium falciparum is via the secretory pathway.
EMBO J..
(2000);
19
1794-1802
- 69
Walter P., Johnson A. E..
Signal sequence recognition and protein targeting to the endoplasmic reticulum membrane.
Annu. Rev. Cell Biol..
(1994);
10
87-119
- 70
Wastl J., Maier U. G..
Transport of proteins into cryptomonads complex plastids.
J. Biol. Chem..
(2000);
275
23194-23198
P. G. Kroth
Universität Konstanz
Fachbereich Biologie
Postfach M611
78457 Konstanz
Germany
Email: peter.kroth@uni-konstanz.de
Section Editor: G. Thiel