References
<A NAME="RG29703ST-1">1</A> Stereoselective Synthesis of Steroids and Related Compounds, part VII. For part
VI see:
Groth U.
Richter N.
Kalogerakis A.
Eur. J. Org. Chem.
2003,
23:
4634
<A NAME="RG29703ST-2A">2a</A>
Comprehensive Natural Products Chemistry
Vol. 8:
Elsevier Science Ltd.;
Amsterdam:
1999.
p.108-136
<A NAME="RG29703ST-2B">2b</A>
Ernst M.
Helmchen G.
Angew. Chem. Int. Ed.
2002,
41:
4054 ; Angew. Chem. 2002, 114, 4231
<A NAME="RG29703ST-2C">2c</A>
Helmchen G.
Gocke A.
Lauer G.
Urmann M.
Angew. Chem., Int. Ed. Engl.
1990,
29:
1024 ; Angew. Chem. 1990, 102, 1079(3)
<A NAME="RG29703ST-3A">3a</A>
Oppolzer W.
Cunningham F.
Tetrahedron Lett.
1986,
26:
5467
<A NAME="RG29703ST-3B">3b</A>
Mash EA.
J. Org. Chem.
1987,
52:
4142
<A NAME="RG29703ST-3C">3c</A>
Lawler DM.
Simpkins NS.
Tetrahedron Lett.
1988,
29:
1207
<A NAME="RG29703ST-3D">3d</A>
Suzuki T.
Tada H.
Unno K.
J. Chem. Soc., Perkin Trans. 1
1992,
2017
<A NAME="RG29703ST-3E">3e</A>
Groth U.
Halfbrodt W.
Köhler T.
Kreye P.
Liebigs Ann. Chem.
1994,
885
<A NAME="RG29703ST-3F">3f</A>
Urban E.
Knühl G.
Helmchen G.
Tetrahedron
1995,
51:
13031
<A NAME="RG29703ST-4">4</A>
Helmchen G.
Ihrig K.
Schindler H.
Tetrahedron Lett.
1987,
28:
183
<A NAME="RG29703ST-5A">5a</A>
Fürstner A.
Müller T.
Synlett
1997,
1010
<A NAME="RG29703ST-5B">5b</A>
Fürstner A.
Langenmann K.
J. Org. Chem.
1996,
61:
8746
<A NAME="RG29703ST-5C">5c</A>
The Total Synthesis of Natural Products
Vol. 11:
John Wiley & Sons, Inc.;
New York:
1994.
p.172-173
<A NAME="RG29703ST-5D">5d</A>
Dactylol is a bicyclic sesquiterpene, which can be synthesized starting from a 2,3-disubstituted
cyclopentanone.
<A NAME="RG29703ST-6A">6a</A>
Quinkert G.
Müller T.
Königer A.
Schultheis O.
Sickenberger B.
Dürner G.
Tetrahedron Lett.
1992,
33:
3469
<A NAME="RG29703ST-6B">6b</A>
The Total Synthesis of Natural Products
Vol. 11:
John Wiley & Sons, Inc.;
New York:
1994.
p.148-150
<A NAME="RG29703ST-6C">6c</A>
Confertin can also be synthesized from a 2,3-disubstituted cyclopentanone.
<A NAME="RG29703ST-7A">7a</A>
Noyori R.
Suzuki M.
Angew. Chem. Int. Ed. Engl.
1984,
23:
847 ; Angew. Chem. 1984, 96, 854
<A NAME="RG29703ST-7B">7b</A>
Steglich W.
Fugmann B.
Lang-Fugmann S.
RÖMPP Natural Products
Thieme;
Stuttgart:
2000.
p.517-518
<A NAME="RG29703ST-8A">8a</A>
Wiechert R.
Angew. Chem. Int. Ed. Engl.
1970,
9:
321 ; Angew. Chem. 1970, 82, 331
<A NAME="RG29703ST-8B">8b</A>
Wiechert R.
Angew. Chem. Int. Ed. Engl.
1970,
16:
506 ; Angew. Chem. 1977, 89, 513
<A NAME="RG29703ST-8C">8c</A>
Quinkert G.
Stark H.
Angew. Chem. Int. Ed. Engl.
1983,
22:
637 ; Angew. Chem. 1983, 95, 651
<A NAME="RG29703ST-8D">8d</A>
Steglich W.
Fugmann B.
Lang-Fugmann S.
RÖMPP Natural Products
Thieme;
Stuttgart:
2000.
p.608-611
<A NAME="RG29703ST-9A">9a</A>
Yamamoto Y. In Houben-Weyl, Methods of Organic Chemistry
Vol. E 21b:
Thieme;
Stuttgart:
1995.
p.2041-2155
<A NAME="RG29703ST-9B">9b</A>
Urban E.
Knühl G.
Helmchen G.
Tetrahedron
1996,
52:
971
<A NAME="RG29703ST-9C">9c</A>
Kanai M.
Tomioka K.
Tetrahedron Lett.
1994,
35:
895
<A NAME="RG29703ST-9D">9d</A>
Hailes HC.
Isaac B.
Javaid MH.
Tetrahedron Lett.
2001,
42:
7325
<A NAME="RG29703ST-9E">9e</A>
Denmark SE.
Kim J.-O.
J. Org. Chem.
1995,
60:
7535
<A NAME="RG29703ST-9F">9f</A>
Hanessian S.
Gomtsyan A.
Malek N.
J. Org. Chem.
2000,
65:
5623
<A NAME="RG29703ST-9G">9g</A>
Hua DH.
Chan-Yu-King R.
McKie JA.
Myer L.
J. Am. Chem. Soc.
1987,
109:
5026
<A NAME="RG29703ST-9H">9h</A>
Barnhart RW.
Wang X.
Noheda P.
Bergens SH.
Whelan J.
Bosnich B.
J. Am. Chem. Soc.
1994,
116:
1821
<A NAME="RG29703ST-9I">9i</A>
Barnhart RW.
McMorran DA.
Bosnich B.
Chem. Commun.
1997,
589
<A NAME="RG29703ST-9J">9j</A>
Moritani Y.
Appella DH.
Jurkauskas V.
Buchwald SL.
J. Am. Chem. Soc.
2000,
122:
6797
<A NAME="RG29703ST-9K">9k</A>
Liang L.
Au-Yeung TT.-L.
Chan ASC.
Org. Lett.
2002,
4:
3799
<A NAME="RG29703ST-10A">10a</A>
Nugent WA.
Hobbs FW.
J. Org. Chem.
1983,
48:
5364
<A NAME="RG29703ST-10B">10b</A>
Nugent WA.
Hobbs FW.
Org. Synth.
1988,
66:
52
<A NAME="RG29703ST-10C">10c</A>
Tietze LF.
Beifuss U.
Angew. Chem., Int. Ed. Engl.
1993,
32:
131 ; Angew. Chem. 1993, 105, 137
<A NAME="RG29703ST-10D">10d</A>
Rossiter BE.
Swingle NM.
Chem. Rev.
1992,
92:
771
<A NAME="RG29703ST-11A">11a</A>
Groth U.
Köhler T.
Taapken T.
Tetrahedron
1991,
47:
7583
<A NAME="RG29703ST-11B">11b</A>
Groth U.
Huhn T.
Richter N.
Liebigs Ann. Chem.
1993,
49
<A NAME="RG29703ST-11C">11c</A>
Groth U.
Köhler T.
Taapken T.
Liebigs Ann. Chem.
1994,
665
<A NAME="RG29703ST-11D">11d</A>
Groth U.
Taapken T.
Liebigs Ann. Chem.
1994,
669
<A NAME="RG29703ST-12">12</A>
Sumitomo H.
Kobayashi K.
Saiji T.
J. Polym. Sci.
1972,
10:
3421
<A NAME="RG29703ST-13A">13a</A>
Ort O.
Org. Synth.
1987,
65:
203
<A NAME="RG29703ST-13B">13b</A>
Scharf H.-D.
Buschmann H.
Synthesis
1988,
827 ; and references cited therein
<A NAME="RG29703ST-14">14</A>
Oppolzer W.
Moretti R.
Godel T.
Meunier A.
Löher H.
Tetrahedron Lett.
1983,
24:
4971
<A NAME="RG29703ST-15A">15a</A>
Lipshutz BH.
Synlett
1990,
119
<A NAME="RG29703ST-15B">15b</A>
Lipshutz BH.
Org. React.
1992,
41:
135
<A NAME="RG29703ST-16">16</A>
Vinyllithium was prepared via reaction of tetravinyltin with n-BuLi.
<A NAME="RG29703ST-17">17</A>
Experimental Procedure: A solution of 10.0 mmol organolithium compound in Et2O (10 mL) was added to a solution of 5.0 mmol copper(I) cyanide in Et2O (10 mL)at
-80 °C. After 2 h stirring 5.0 mmol BF3·Et2O were added and the resultant mixture was cooled at -95 °C. A solution of 1.0 mmol
chiral enoate 5 in Et2O (10 mL) was added via canulla and the obtained mixture was allowed to warm under
stirring to r.t. (18 h). The reaction mixture was quenched with aq sat. NH4Cl solution (30 mL), extracted with Et2O (2 × 20 mL), the combined organic layer dried over MgSO4 and evaporated in vacuum. Purification of the residue by flash chromatography provided
the 2,3-substituted cyclopentanone 7.
Analytical data of selected compounds (Figure
[1]
).
Compound 7e: Rf 0.41 (Et2O-petroleum ether, 1:5). IR(film): 3040 (alkene CH), 1740 (C=O), 1725 (OC=O), 1650
(alkene C=C), 1610 (arom. C=C) cm-1. 1H NMR (250 MHz, CDCl3): δ = 0.87 (d, 3
J = 6.5 Hz, 1 H, H-5′), 1.19 (s, 3 H, CH3), 1.27 (s, 3 H, CH3), 0.80-1.84 (m, 7 H, H-1′, H-3′, H-4′, H-6′), 1.88-2.40 (m, 3 H, H-4, H-5, H-2′),
3.46 (d,
3
J = 11 Hz, 1 H, H-2), 2.83-3.05 (m, 1 H, H-3), 4.81 (ddd,
3
J = 10.5, 10.5, 4 Hz, 1 H, COOCH, H-1′), 5.09 (ddd, J
cis
= 10 Hz, J = 1.5, 1.5 Hz, 1 H, CH=CH2), 5.125 (ddd, J
trans
= 17 Hz, J = 1.5, 1.5 Hz, 1 H, CH=CH2), 5.745 (ddd, J
trans
= 17 Hz, J
cis
= 10 Hz, J = 7 Hz, 1 H, CH=CH2), 7.06-7.20 (m, 1 H, arom. H), 7.23-7.38 (m, 4 H, arom. H). 13C NMR (62.5 MHz, CDCl3): δ = 21.74 [22.75] (CH3), 25.68 (CH3), 26.58 (cyclopentane-CH2), [26.43] 26.65 (cyclohexane-CH2), 27.37 [27.51] (CH3), [29.52] 31.28 (CHCH3, C-5′), 34.52 [34.68] (cyclohexane-CH2), 37.79 [38.25] (cyclopentane-CH2), 39.70 [39.87] (C(CH3)2), 41.38 [41.73] (cyclohexane-CH2), 43.73 [46.20] (CHCH=CH2, C-3), 49.96 [50.48] (C-2¢), 60.90 [62.07] (COCHCO, C-2), 75.96 [76.30] (C-1′), 115.78
[116.24] (CH = CH2), 124.87 [125.18], 125.45 [125.56], [127.84] 127.97 (3 × C-arom.), 138.62 [140.67]
(CH=CH2), 151.51 (C-arom.), 167.34 [168.13] (COO), 210.22 (CO) (signals of the 2R,3S-configured diastereomer in brackets). EI-MS (70 eV): m/z (100) = 119 [PhC(CH3)2] (100), 249 (4) [M+ - PhC(CH3)2)], 368 (2) [M+]. Anal. Calcd for C24H32O3 (368.5): C, 78.22; H, 8.75. Found: C, 78.39; H, 8.85.
Compound 7f (Table 1, entry 11): Rf 0.46 (Et2O-petroleum ether, 1:1); mp: 59-63 °C. IR(nujol): 3060, 3040 (arom. CH), 1750 (C=O),
1730 (OC=O), 1640 (C=C), 1610, 1595 (arom. C=C), 1350, 1165 (CSO2N) cm-1. 1H NMR (250 MHz, CDCl3): δ = 0.82 (s, 3 H, CH3), 0.88 (s, 3 H, C-1-CH3), 1.04 (s, 3 H, CH3), 0.90-2.45 (m, 9 H, CH, CH2), 2.02 (s, 3 H, arom. CH3), 2.32 (s, 3 H, arom. CH3), 3.33 (d, J
trans
= 11.2 Hz, 1 H, H-2′), 3.34-3.50 (m, 1 H, H-3′), 4.25 (ddd, J = 8.8 Hz, J = 3.4 Hz, 4
J = 1.0 Hz, 1 H, H-3), 5.11 (ddd, J
cis = 10.6 Hz, 2
J = 1.2 Hz, 4
J = 1.2 Hz, 1 H, CH=CH2), 5.27 (ddd, J
trans
= 17.0 Hz, 2
J = 1.2 Hz, 4
J = 1.2 Hz, 1 H, CH=CH2), 5.46 (d, J = 8.8 Hz, 1 H, H-2), 5.78 (s, 1 H, arom. H), 5.98 (ddd, J
trans
= 17.0 Hz, J
cis
= 10.6 Hz, J = 6.6 Hz, 1 H, CH=CH2), 6.83 (s, 1 H, arom. H), 7.11 (s, 1 H, arom. H), 7.28-7.57 (m, 5 H, arom. H). 13C NMR (62.5 MHz, CDCl3): δ = 14.30 (C-10), 19.41 (C-8), 19.51 (C-9), 19.69 (C-5), 20.98, 21.29 (2 × arom.
CCH3), 26.59 (C-6), 26.62 (C-4′), 38.13 (C-5′), [35.53] 43.46 (C-3′), 45.71 (C-7), 49.38
(C-4), 51.30 (C-1), 59.35 (C-3), 60.77 [63.27] (C-2′), 77.59 (C-2), 115.38 (CH=CH2), 127.49, 128.12, 129.33, 129.89, 132.46 (arom. C), 138.64 (CH=CH2), 136.98, 137.05, 138.16, 139.04 (arom. C), 167.88 (CHCOO), 210.70 [212.35] (C=O)
(signals of the 2′R,3′S-configured diastereomer in brackets). EI-MS (70 eV): m/z (%) = 549 (3) [M+], 395(11) [M+ - C8H10O3], 254 (100) [M+ - C8H10O3 - SO2C6H5], 105 (22) [C8H9
+]. Anal. Calcd for C32H39O5NS (549.7): C, 69.92; H, 7.15. Found: C, 69.87; H, 7.28.
Compound 8e (Table 2, entry 5): Rf 0.31 (Et2O-petroleum ether, 1:2). [α]D
20 +82.3 (c 1.5, CHCl3). Bp. 65-70 °C (2 torr). IR(film): 3065 (alkene CH), 1750 (C=O), 1730 (OC=O), 1635
(C=C) cm-1. 1H NMR (250 MHz, CDCl3):
δ = 1.54-1.86 (m, 1 H, CH), 2.16-2.60 (m, 3 H, CH, CH2), 3.03 (dd, 3
J = 11.6 Hz, 4
J = 0.6 Hz, 1 H, C-2-H), 3.14-3.29 (m, 1 H, C-3-H), 3.76 (s, 3 H, OCH3), 5.10 (ddd, 3
J
cis = 10.0 Hz, 2
J = 1.2 Hz, 4
J = 1.2 Hz, 1 H, CH=CH2), 5.17 (ddd,
3
J
trans
= 17.0 Hz, 2
J = 1.2 Hz, 4
J = 1.2 Hz, 1 H, CH=CH2), 5.84 (ddd, 3
J
trans
= 17.0 Hz, 3
J
cis
= 10.0 Hz, 3
J = 6.6 Hz, 1 H, CH=CH2). 13C NMR (62.5 MHz, CDCl3): δ = 27.25 (C-4), 38.12 (C-5), 44.83 (C-3), 52.48 (OCH3), 60.77 (C-2), 115.95 (CH=CH2), 135.95 (CH=CH2), 169.10 (COOCH3), 210.71 (C-1). EI-MS (70 eV): m/z (%) = 168 (86) [M+], 137 (85) [M+ - OCH3], 109 (90) [M+ - COOCH3], 81 (100) [M+ - C2H3O2 - C2H3 - H]. HRMS: m/z calcd for C9H12O3 (168.2): 168.0786; found: 168.0786.
Compound 10e (Table 2, entry 5): Rf 0.41 (Et2O-petroleum ether, 1:10). [α]D
20 +3.3 (c 1.4, CHCl3). IR(film): 3065 (alkene CH), 1635 (C=C) cm-1. 1H NMR (250 MHz, CDCl3): δ = 1.21-1.27 (m, 6 H, CH3), 1.31-2.08 (m, 6 H, CH2), 2.46-2.74 (m, 1 H, CHCH=CH2), 3.47-3.66 (m, 2 H, OCH), 4.91 (ddd, 3
J
cis = 10.0 Hz, 2
J = 1.5 Hz, 4
J = 1.5 Hz, 1 H, CH=CH2), 5.00 (ddd, 3
J
trans
= 17.2 Hz, 2
J = 1.5 Hz, 4
J = 1.5 Hz, 1 H, CH=CH2), 5.79 (ddd, 3
J
trans
= 17.2 Hz, 3
J
cis
= 10.0 Hz, 3
J = 7.2 Hz, 1 H, CH=CH2). 13C NMR (62.5 MHz, CDCl3): δ = 16.86 (CH3), 16.95 (CH3), 30.57, 37.98 (CH2), 42.16 (C-7), 44.43 (CH2), 78.21 (CHCH3), 78.26 (CHCH3), 113.07 (CH=CH2), 116.84 (OCO), 141.98 (CH=CH2). EI-MS (70 eV): m/z (%) = 182 (3) [M+], 114 (100) [C6H10O2
+], 54 (26) [C4H8
+]. Anal. Calcd for C11H18O2 (182.3): C, 72.49; H, 9.95. Found: C, 72.36; H, 9.84.
<A NAME="RG29703ST-18">18</A>
Marx JN.
Norman LR.
J. Org. Chem.
1975,
40:
1602
<A NAME="RG29703ST-19A">19a</A>
For 9b (R = Ph): [α]D
20 = +83.4 (c 0.3, CHCl3).
<A NAME="RG29703ST-19B">19b</A>
Taber DF.
Raman K.
J. Am. Chem. Soc.
1983,
105:
5935
<A NAME="RG29703ST-19C">19c</A>
Taura Y.
Tanaka M.
Wu X.-M.
Funakoshi K.
Sakai K.
Tetrahedron
1991,
47:
4879
<A NAME="RG29703ST-20">20</A>
For 9c (R = t-Bu): [α]D
20 = +134.8 (c 1.13, CHCl3); ref.19b
<A NAME="RG29703ST-21">21</A>
Hiemstra H.
Wynberg H.
Tetrahedron Lett.
1977,
25:
2183
<A NAME="RG29703ST-22A">22a</A>
Parish EJ.
Mody NV.
Hedin PA.
Miles DH.
J. Org. Chem.
1974,
39:
1592
<A NAME="RG29703ST-22B">22b</A>
Huang B.-S.
Parish EJ.
Miles DH.
J. Org. Chem.
1974,
39:
2647