Subscribe to RSS
DOI: 10.1055/s-2004-817780
Transition Metal-based Lewis Acid Catalyzed Ring Opening of Epoxides Using Amines under Solvent-Free Conditions
Publication History
Publication Date:
17 February 2004 (online)

Abstract
Transition metal-based Lewis acids, such as SnCl4·5H2O, Co(OAc)2·4H2O, Ni(OAc)2·2H2O, NiCl2, Mn(OAc)2·4H2O etc. catalyze the nucleophilic opening of epoxide rings by amines leading to the efficient synthesis of β-amino alcohols. The reaction works well with aromatic and aliphatic amines in high yields under solvent-free conditions.
Key words
amino alcohols - amines - epoxides - Lewis acids - solvent-free
- 1a 
             
            Rogers GA.Parsons SM.Anderson DC.Nilsson LM.Bahr BA.Kornreich WD.Kaufman R.Jacobs RS.Kirtman B. J. Med. Chem. 1989, 32: 1217
- 1b 
             
            Ager DJ.Prakash I.Schaad DR. Chem. Rev. 1996, 96: 835
- 1c 
             
            Kobayashi S.Ishitani H.Ueno M. J. Am. Chem. Soc. 1998, 120: 431
- 1d 
             
            Corey EJ.Zhang FY. Angew. Chem. Int. Ed. 1999, 38: 1931
- 2a 
             
            Hodgson DM.Gibbs AR.Lee GP. Tetrahedron Lett. 1996, 52: 14361
- 2b 
             
            Bergmeier SC. Tetrahedron 2000, 56: 2561
- 3a 
             
            Deyrup JA.Moyer CL. J. Org. Chem. 1969, 34: 175
- 3b 
             
            Crooks PA.Szyudler R. Chem. Ind. (London, U.K.) 1973, 1111
- 4a 
             
            Fujiwara M.Imada M.Baba A.Matsuda H. Tetrahedron Lett. 1989, 30: 739
- 4b 
             
            Chini M.Crotti P.Macchia F. J. Org. Chem. 1991, 56: 5939
- 4c 
             
            Van de Weghe P.Collin J. Tetrahedron Lett. 1995, 36: 1649
- 5 
             
            De A.Ghosh S.Iqbal J. Tetrahedron Lett. 1997, 38: 8379
- 6 
             
            Fagnou K.Lautens M. Org. Lett. 2000, 2: 2319
- 7 
             
            Sekar G.Singh VK. J. Org. Chem. 1999, 64: 287
- 8a 
             
            Posner GH.Rogers DZ. J. Am. Chem. Soc. 1977, 99: 8208
- 8b 
             
            Harrak Y.Pujol MD. Tetrahedron Lett. 2002, 43: 819
- 8c 
             
            Xue WM.Kung MC.Kozlov AI.Popp KE.Kung HH. Catal. Today 2003, 85: 219
- 9a 
             
            Overman LE.Flippin LA. Tetrahedron Lett. 1981, 22: 195
- 9b 
             
            Papini A.Ricci I.Taddei M.Seconi G.Dembech P. J. Chem. Soc., Perkin. Trans. 1 1984, 2261
- 9c 
             
            Carre MC.Houmounou JP.Caubere P. Tetrahedron Lett. 1985, 26: 3107
- 9d 
             
            Yamamoto Y.Asao N.Meguro M.Tsukada N.Nemoto H.Sadayori N.Wilson JG.Nakamura H. J. Chem. Soc., Chem. Commun. 1993, 1201
- 10 
             
            Chaudhari SS.Akamanchi KG. Synthesis 2000, 78
- 11a 
             
            Chini M.Crotti P.Favero L.Machhia F.Pineschi M. Tetrahedron Lett. 1994, 35: 433
- 11b 
             
            Meguro M.Asao N.Yamamoto Y. J. Chem. Soc., Perkin Trans. 1 1994, 2597
- 11c 
             
            Auge J.Leroy F. Tetrahderon Lett. 1996, 37: 7715
- 11d 
             
            Serrano P.Llebaria A.Delgado A. J. Org. Chem. 2002, 67: 7165
- 11e 
             
            Thibeault D.Poirier D. Synlett 2003, 1192
- 11f 
             
            Cepanec I.Litvi M.Mikulda H.Bartolin A.i Vinkovi V. Tetrahedron 2003, 59: 2435
- 12a 
             
            Iqbal J.Pandey A. Tetrahedron Lett. 1990, 31: 575
- 12b 
             
            Chandrasekhar S.Ramchander T.Prakash SJ. Synthesis 2000, 1817
- 12c 
             
            Reddy LR.Reedy MA.Bhanumathi N.Rao KR. Synthesis 2001, 831
- 12d 
             
            Fu XL.Wu SH. Synth. Commun. 1997, 27: 1677
- 12e 
             
            Ollevier T.Lavie-Compin G. Tetrahedron Lett. 2002, 43: 7891
- 12f 
             
            Pachon LD.Gamez P.van Brussel JJM.Reedijk J. Tetrahedron Lett. 2003, 44: 6025
- 12g 
             
            Chakraborti AK.Kondaskar A. Tetrahedron Lett. 2003, 44: 8315
- 13a 
             
            Kotsuki H.Shimanouchi T.Teraguchi M.Kataoka M.Tatsukawa A.Nishizawa H. Chem. Lett. 1994, 2159
- 13b 
             
            Kotsuki H.Hayashida K.Shimanouchi T.Nishizawa H. J. Org. Chem. 1996, 61: 984
- 14 
             
            Mojtahedi MM.Saidi MR.Bolourtchain M. J. Chem. Res., Synop. 1999, 128
- 15a 
             
            Tanaka K.Toda F. Chem. Rev. 2000, 100: 1025
- 15b 
             
            Bartoli G.Bosco M.Dalpozzo R.Marcantoni E.Massaccesi M.Rinaldi S.Sambri L. Synlett 2003, 39
- 15c 
             
            Akiyama T.Sanada M.Fuchibe K. Synlett 2003, 1463
- 15d 
             
            Togo H.Hirai T. Synlett 2003, 702
- 15e 
             
            Firouzabadi H.Iranpoor N.Nowrouzi F. Tetrahedron Lett. 2003, 44: 5343
- 15f 
             
            Xu LW.Li JW.Xia CG.Zhou SL.Hu XX. Synlett 2003, 2425
- 16a 
             
            Xu LW.Xia CG.Hu XX. Chem. Commun. 2003, 2570
- 16b 
             
            Xu LW.Xia CG.Li JW.Zhou SL. Synlett 2003, 2246
- 16c 
             
            Xu LW.Xia CG.Li JW.Zhou S.-L.Hu XX. Synlett 2003, 2337
References
Typical Experimental Procedure: A mixture of the phenyl glycidyl ether (2 mmol), the aniline (2.2 mmol), and SnCl4·5H2O (0.1 mmol, 5%mol) was stirred at 50 ° for 12 h. After completion of the reaction, as indicated by TLC, the reaction mixture was directly purified by column chromatography on silica gel (100-200mesh, EtOAc-petroleum ether) to afford corresponding β-amino alcohols. Selected spectra data: 1H NMR (400 MHz, CDCl3): δ = 3.24 (m, 1 H), 3.40 (m, 1 H), 3.61 (m, 2 H), 4.02 (m, 2 H), 4.22 (br s, 1 H), 6.65 (m, 2 H), 6.72 (m, 2 H), 6.90 (m, 2 H), 7.15 (m, 2 H), 7.26 (m, 2 H). 13C NMR (100 MHz, CDCl3): δ = 158.4, 148.0, 121.2, 118.4, 117.9, 115.0, 114.5, 113.2, 69.9, 60.3, 46.5. GC-MS: m/z = 243, 106, 94, 77, 65, 51. All other known compounds were fully characterized by GC-MS (Agilent 6890N GC/5973N MS, HP-5MS) and usual spectral methods.
 
    