Plant Biol (Stuttg) 2004; 6(2): 105-108
DOI: 10.1055/s-2004-817803
Rapid Communication

Georg Thieme Verlag Stuttgart · New York

Gene Expression Analysis in Cucumber Leaves Primed by Root Colonization with Pseudomonas chlororaphis O6 upon Challenge-Inoculation with Corynespora cassiicola

M. S. Kim1 , Y. C. Kim1 , B. H. Cho1
  • 1Agricultural Plant Stress Research Center and Institute of Agriculture, Science and Technology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
Further Information

Publication History

Publication Date:
26 March 2004 (online)

Abstract

Root colonization by Pseudomonas chlororaphis O6, a non-pathogenic rhizobacterium, induced systemic resistance in cucumber against target leaf spot caused by Corynespora cassiicola. A cDNA library was constructed using mRNA extracted from cucumber leaves 12 h after inoculation with C. cassiicola, using plants colonized by O6. To identify genes involved in O6-mediated induced systemic resistance (ISR), we employed a subtractive hybridization method using mRNAs extracted from pathogen-challenged cucumber leaves of plants lacking colonization. Differential screening of the cDNA library led to the isolation of six distinct genes encoding a GTP binding protein, a 60S ribosomal protein, a hypersensitive-induced reaction protein, a ubiquitin extension protein, a pyridine nucleotide-disulfide oxidoreductase, and a signal recognition particle receptor. Expression of these genes was not induced by O6 colonization alone. Rather, transcript accumulation of these genes increased significantly faster and stronger in the O6 colonized than in non-colonized plants after challenge infection. Therefore, O6-mediated ISR may be associated with an enhanced capacity for the rapid and effective activation of cellular defence responses after challenge inoculation.

References

  • 1 Benhamou N., Kloepper J. W., Quadt-Hallman A., Tuzun S.. Induction of defense-related ultrastructural modifications in pea root tissues inoculated with endophytic bacteria.  Plant Physiol.. (1996);  112 919-929
  • 2 Conrath U., Pieterse C. M., Mauch-Mani B.. Priming in plant-pathogen interactions.  Trends Plant Sci.. (2002);  7 210-216
  • 3 Dangl J. L., Dietrich R. A., Richberg M. H.. Death don't have no mercy: Cell death programs in plant-microbe interactions.  Plant Cell. (1996);  8 1793-1807
  • 4 Hoffman N. E., Ko K., Milkowski D., Pichersky E.. Isolation and characterization of tomato cDNA and genomic clones encoding the ubiquitin gene ubi3. .  Plant Mol. Biol.. (1991);  17 1189-1201
  • 5 Huang H., Colella S., Kurrer M., Yonekawa Y., Kleihues P., Ohgaki H.. Gene expression profiling of low-grade diffuse astrocytomas by cDNA arrays.  Cancer Res.. (2000);  60 6868-6874
  • 6 Kang M. J., Ahn H. S., Lee J. Y., Matsuhashi S., Park W. Y.. Up-regulation of PCDD4 in senescent human diploid fibroblasts.  Biochem. Biophys. Res. Commun.. (2002);  293 617-621
  • 7 Mathieu O., Yukawa Y., Prieto J.-L., Vaillant I., Sugiura M.. Identification and characterization of transcription factor IIIA and ribosomal protein L5 from Arabidopsis thaliana. .  Nucleic Acids Res.. (2003);  31 2424-2433
  • 8 Nadimpalli R., Yalpani N., Johal G. S., Simmons C. R.. Prohibitins, stomatins, and plant disease response genes compose a protein superfamily that controls cell proliferation, ion channel regulation, and death.  J. Biol. Chem.. (2000);  275 29579-29586
  • 9 Park K. S., Kloepper J. W.. Activation of PR-1 a promoter by rhizobacteria that induce systemic resistance in tobacco against Pseudomonas syringae pv. tabaci. .  Biol. Control. (2000);  18 2-9
  • 10 Pieterse C. M., van Wees S. C., van Pelt J. A., Knoester M., Laan R., Gerrits H., Weisbeek P. J., van Loon L. C.. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. .  Plant Cell. (1998);  10 1571-1580
  • 11 Radtke C. W., Cook S., Anderson A.. Factors affecting the growth antagonism of Phanerochaete chrysosporium by bacteria isolated from soils.  Appl. Microbiol. Biotechnol.. (1994);  41 274-280
  • 12 Raupach G. S., Kloepper J. W.. Mixtures of plant growth-promoting rhizobacteria enhance biological control of multiple cucumber pathogens.  Phytopathol.. (1998);  88 1158-1164
  • 13 Rutherford S., Moore I.. The Arabidopsis Rab GTPase family: Another enigma variation.  Curr. Opi. Plant Biol.. (2002);  5 518-528
  • 14 Spencer M., Ryu C. M., Yang K. Y., Kim Y. C., Kloepper J. W., Anderson A.. Induced defenses in tobacco by Pseudomonas chlororaphis strain O6 involves at least the ethylene pathway.  Physiol. Mol. Plant Pathol.. (2003);  41 117-153
  • 15 Timmusk S., Wagner E. G.. The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses.  Mol. Plant-Microbe Interact.. (1999);  12 951-959
  • 16 Van Loon L. C., Bakker P. A. H. M., Pieterse C. M. J.. Systemic resistance induced by rhizosphere bacteria.  Annu. Rev. Phytopathol.. (1998);  36 453-483
  • 17 Wong J. M., Mafune K., Yow H., Rivers E. N., Ravikumar T. S., Steele  Jr. G. D., Chen L. B.. Ubiquitin-ribosomal protein S27a gene overexpressed in human colorectal carcinoma is an early growth response gene.  Cancer Res.. (1993);  53 1916-1920
  • 18 Yang Z.. Small GTPases: Versatile signaling switches in plants.  Plant Cell Supplement. (2002);  2002 S375-S388
  • 19 Zhu J. K., Liu J., Xiong L.. Genetic analysis of salt tolerance in Arabidopsis. Evidence for a critical role of potassium nutrition.  Plant Cell. (1998);  10 1181-1191

B. H. Cho

Division of Applied Plant Science
College of Agriculture and Life Sciences
Chonnam National University

Gwangju 500-757

South Korea

Email: chobh@chonnam.ac.kr

Section Editor: C. Pieterse

    >