Abstract
The straightforward four-step synthesis of unsaturated seven-membered carbocycles
and heterocycles via a route starting from catechols and quinones is described. The
route is based on the Perkin ring-closure reaction and was designed to alleviate the
usual problems associated with the formation of medium rings. This is achieved through
the presence of unsaturation in the starting material, which alleviates ring strain
problems, reduces the entropy of activation and ensures that the chain ends are suitably
orientated to encourage ring closure.
Key words
ring closure - carbocycles - heterocycles - seven-membered rings - catechol
References
<A NAME="RA33703ST-1A">1a </A>
Willstätter R.
Berichte
1901,
129
<A NAME="RA33703ST-1B">1b </A>
Willstätter R.
Berichte
1901,
3163
<A NAME="RA33703ST-1C">1c </A> For an account in English see:
Holmes HL. In
The Alkaloids
Vol. 1:
Mansker RHF.
Holmes HL.
Academic Press;
New York:
1950.
p.288
<A NAME="RA33703ST-2">2 </A>
Willstätter R.
Waser E.
Berichte
1911,
3423
<A NAME="RA33703ST-3A">3a </A>
Turner S.
The Design of Organic Syntheses
Elsevier;
Amsterdam:
1976.
p.3
<A NAME="RA33703ST-3B">3b </A>
Fleming I.
Selected Organic Syntheses
Wiley & Sons;
New York:
1793.
Chap. 2.
<A NAME="RA33703ST-3C">3c </A>
Yet L.
Chem. Rev.
2000,
100:
2963
<A NAME="RA33703ST-3D">3d </A>
Yet L.
Tetrahedron
1999,
55:
9349
<A NAME="RA33703ST-4">4 </A> For a review see:
Ewing DF. In
2nd Supplement to Rodd’s Chemistry of Carbon Compounds
2nd ed., Vol. 2:
Sainsbury M.
Elsevier;
Amsterdam:
1994.
Chap. 8a.
<A NAME="RA33703ST-5">5 </A>
Comprehensive Heterocyclic Chemistry II
Katritzky AR.
Schriver EFV.
Rees CW.
Pergamon;
Oxford:
1996.
<A NAME="RA33703ST-6">6 </A>
Sammes PG. In
Comprehensive Organic Chemistry, Heterocyclic Chemistry
Vol. 4:
Barton D.
Ollis WD.
Pergamon;
Oxford:
1979.
For reviews of the chemistry of azepines and their synthesis see:
<A NAME="RA33703ST-7A">7a </A>
Le Count D. In
Comprehensive Heterocyclic Chemistry II
Vol. 9:
Katritzky AR.
Schriver EFV.
Rees CW.
Pergamon;
Oxford:
1996.
Chap. 9.01.
p.1
<A NAME="RA33703ST-7B">7b </A>
Sammes PG. In
Comprehensive Organic Chemistry, Heterocyclic Chemistry
Vol. 4, Part 17.6:
Barton D.
Ollis WD.
Pergamon;
Oxford:
1979.
p.582
<A NAME="RA33703ST-8">8 </A>
Pabel M.
Wild SB. In
Comprehensive Heterocyclic Chemistry II
Vol. 9:
Katritzky AR.
Schriver EFV.
Rees CW.
Pergamon;
Oxford:
1996.
Chap. 9.34.
p.947
For reviews of the chemistry of thiepins and their synthesis see:
<A NAME="RA33703ST-9A">9a </A>
Yamamoto K.
Yamazaki S. In
Comprehensive Heterocyclic Chemistry II
Katritzky AR.
Schriver EFV.
Rees CW.
Pergamon;
Oxford:
1996.
Chap. 9.03.
p.67
<A NAME="RA33703ST-9B">9b </A>
Sammes PG. In
Comprehensive Organic Chemistry, Heterocyclic Chemistry
Vol. 4, Part 19.2:
Barton D.
Ollis WD.
Pergamon;
Oxford:
1979.
p.865
For reviews of the chemistry of oxepins and their synthesis see:
<A NAME="RA33703ST-10A">10a </A>
Belenkii LI. In
Comprehensive Heterocyclic Chemistry II
Vol. 9:
Katritzky AR.
Schriver EFV.
Rees CW.
Pergamon;
Oxford:
1996.
Chap. 9.02.
p.45
<A NAME="RA33703ST-10B">10b </A>
Sammes PG. In
Comprehensive Organic Chemistry, Heterocyclic Chemistry
Vol. 4:
Barton D.
Ollis WD.
Pergamon;
Oxford:
1979.
Part 18.6.
p.773
For reviews on the Dieckmann condensation see:
<A NAME="RA33703ST-11A">11a </A>
Schaefer JP.
Bloomfield JJ.
Org. React.
1967,
1
<A NAME="RA33703ST-11B">11b </A>
Ewing DF. In
2nd Supplement to Rodd’s Chemistry of Carbon Compounds
2nd ed., Vol. 2:
Sainsbury M.
Elsevier;
Amsterdam:
1994.
Chap. 8a.
p.687
<A NAME="RA33703ST-11C">11c </A>
Sharp JT. In
2nd Supplement to Rodd’s Chemistry of Carbon Compounds
Vol. 4:
Sainsbury M.
Elsevier Science;
Amsterdam:
1989.
Part K.
<A NAME="RA33703ST-11D">11d </A>
Hill RK. In Comprehensive Organic Synthesis
Vol. 5:
Trost BM.
Fleming I.
Pergamon Press;
NewYork:
1991.
p.806
<A NAME="RA33703ST-12">12 </A> For a leading review on the Thorpe-Ziegler Reaction see:
Davis BR.
Garratt PJ. In Comprehensive Organic, Synthesis
Vol. 2:
Trost BM.
Fleming I.
Pergamon Press;
New York:
1991.
p.848
For reviews on the acyloin reaction see
<A NAME="RA33703ST-13A">13a </A>
Brettle R. In Comprehensive Organic Synthesis
Vol. 3:
Trost BM.
Fleming I.
Pergamon Press;
New York:
1991.
p.626
<A NAME="RA33703ST-13B">13b </A>
Finley KT.
Chem. Soc. Rev.
1964,
573
<A NAME="RA33703ST-14">14 </A> The Ruzicka cyclisation:
Ewing DF. In
2nd Supplement to Rodd’s Chemistry of Carbon Compounds
2nd ed., Vol. 2:
Sainsbury M.
Elsevier;
Amsterdam:
1994.
Chap. 8a.
p.496 ; and references cited therein
For examples of ring synthesis via ring expansion see:
<A NAME="RA33703ST-15A">15a </A>
Blanco L.
Slougui G.
Rousseau G.
Conia JM.
Tetrahedron Lett.
1981,
22:
645
<A NAME="RA33703ST-15B">15b </A>
Katoh T.
Tanino K.
Kuwajima I.
Tetrahedron Lett.
1988,
29:
1819
For a review of metal mediated reactions in the synthesis of medium rings see ref.
3c and also:
<A NAME="RA33703ST-16A">16a </A>
Molander GA.
Alonso-Alija C.
J. Org. Chem.
1998,
53:
4366
<A NAME="RA33703ST-16B">16b </A>
Wender PA.
Glorius F.
Husfeld CO.
Langkopf E.
Love JA.
J. Am. Chem. Soc.
1999,
121:
5348
<A NAME="RA33703ST-16C">16c </A>
Shengming M.
Negishi E.
J. Org. Chem.
1994,
59:
4730
<A NAME="RA33703ST-16D">16d </A>
Marson CM.
Benzies DWM.
Hobson AD.
Adams H.
Bailey NA.
J. Chem. Soc., Chem. Commun.
1990,
1516
<A NAME="RA33703ST-16E">16e </A>
Marson CM.
McGregor J.
Khan A.
J. Org. Chem.
1998,
63:
7833
<A NAME="RA33703ST-16F">16f </A>
Herndon JW.
Chatterjee G.
Patel PP.
Matasi JJ.
Tumer SU.
Harp JJ.
Reid MD.
J. Am. Chem. Soc.
1991,
111:
7808
<A NAME="RA33703ST-16G">16g </A>
Barluenga J.
Aznar F.
Martin A.
Garcia-Granda S.
Salvado MA.
Pertierra P.
J. Chem. Soc., Chem. Commun.
1993,
311
For a review of radical reactions in the synthesis of medium rings see ref. 3d and
also:
<A NAME="RA33703ST-17A">17a </A>
McMurry JE.
Miller D.
J. Am. Chem. Soc.
1983,
105:
1660
<A NAME="RA33703ST-17B">17b </A>
Thompson CM.
Docter S.
Tetrahedron Lett.
1988,
29:
5213
<A NAME="RA33703ST-17C">17c </A>
Duffault JM.
Synlett
1998,
33
<A NAME="RA33703ST-17D">17d </A>
Dowd P.
Choi C.-C.
Tetrahedron
1992,
48:
4773
<A NAME="RA33703ST-17E">17e </A>
Marshall JA.
Andersen NH.
Johnson PC.
J. Org. Chem.
1970,
35:
186
<A NAME="RA33703ST-17F">17f </A>
Sneider BB.
Ke Y.
Tetrahedron Lett.
1989,
30:
5765
<A NAME="RA33703ST-17G">17g </A>
Marco-Contelles J.
de Opazo E.
J. Org. Chem.
2002,
67:
3705
<A NAME="RA33703ST-18">18 </A> For a leading review of ring closing metathesis see:
Trnka TM.
Grubbs RH.
Acc. Chem. Res.
2001,
34:
18
An interesting application of ring closing metathesis is from Marco-Contelles and
de Opazo, who have used ring closing metathesis to synthesise cycloheptanols in high
enantiopurity from the naturally occurring carbohydrate d -mannose:
<A NAME="RA33703ST-19A">19a </A>
Marco-Contelles J.
de Opazo E.
Tetrahedron Lett.
2000,
41:
2439
<A NAME="RA33703ST-19B">19b </A>
Marco-Contelles J.
de Opazo E.
J. Org. Chem.
2000,
65:
5416
<A NAME="RA33703ST-20">20 </A>
Wipf P. In Comprehensive Organic Synthesis
Vol. 5:
Trost BM.
Fleming I.
Pergamon Press;
New York:
1991.
Chap. 71.
<A NAME="RA33703ST-21">21 </A> Cope rearrangement:
Wender PA.
Filosa MP.
J. Org. Chem.
1976,
41:
3490
<A NAME="RA33703ST-22">22 </A> Claisen rearrangement:
Staley SW.
Wiseman FL.
J. Org. Chem.
1970,
35:
3868
<A NAME="RA33703ST-23">23 </A>
March J.
Advanced Organic Chemistry
4th ed.:
Wiley-Interscience;
New York:
1992.
p.134
<A NAME="RA33703ST-24">24 </A>
Ewing DF. In
2nd Supplement to Rodd’s Chemistry of Carbon Compounds
2nd ed., Vol. 2:
Sainsbury M.
Elsevier;
Amsterdam:
1994.
Chap. 8a.
p.211
<A NAME="RA33703ST-25">25 </A>
Ewing DF. In
2nd Supplement to Rodd’s Chemistry of Carbon Compounds
2nd ed., Vol. 2:
Sainsbury M.
Elsevier;
Amsterdam:
1994.
Chap. 8a.
p.155
<A NAME="RA33703ST-26">26 </A>
Ewing DF. In
2nd Supplemet to Rodd’s Chemistry of Carbon Compounds
2nd ed., Vol. 2:
Sainsbury M.
Elsevier;
Amsterdam:
1994.
Chap. 8a.
p.156
<A NAME="RA33703ST-27">27 </A> Preliminary communication:
Walsh JG.
Furlong PJ.
Gilheany DG.
J. Chem. Soc., Chem. Commun.
1994,
67
<A NAME="RA33703ST-28A">28a </A>
Brillon D.
Deslongchamps P.
Can. J. Chem.
1984,
62:
2395
<A NAME="RA33703ST-28B">28b </A>
Brillon D.
Deslongchamps P.
Can. J. Chem.
1987,
65:
43
<A NAME="RA33703ST-28C">28c </A>
Brillon D.
Deslongchamps P.
Can. J. Chem.
1987,
65:
56
<A NAME="RA33703ST-29A">29a </A>
Gleiter R.
Ritter J.
Irngartinger H.
Lichtenthaler J.
Tetrahedron Lett.
1991,
32:
2883
<A NAME="RA33703ST-29B">29b </A>
Gleiter R.
Ritter J.
Irngartinger H.
Lichtenthaler J.
Tetrahedron Lett.
1991,
32:
2887
<A NAME="RA33703ST-30">30 </A>
We use the cis,cis terminology to mean the general stereochemistry that places the carboalkoxy group
and other alkene moiety on the same side of the double bonds. Individual compounds
are of course named according to the E /Z nomenclature.
<A NAME="RA33703ST-31">31 </A>
Walsh JG.
Furlong PJ.
Byrne LA.
Gilheany DG.
Tetrahedron
1999,
55:
11519
<A NAME="RA33703ST-32">32 </A>
Walsh JG.
Furlong PJ.
Gilheany DG.
J. Chem. Soc., Perkin Trans. 1
1999,
3657
<A NAME="RA33703ST-33">33 </A>
Hayaishi O. In
Molecular Mechanisms of Oxygen Activation
Hayaishi O.
Academic Press;
New York:
1974.
p.1
<A NAME="RA33703ST-34">34 </A>
Tsuji J.
Takayanagi H.
J. Am. Chem. Soc.
1974,
96:
7349
<A NAME="RA33703ST-35">35 </A>
Tsuji J.
Takayanagi H.
Tetrahedron
1978,
34:
641
<A NAME="RA33703ST-36">36 </A>
Tsuji J.
Takayanagi H.
Sakal I.
Tetrahedron Lett.
1975,
16:
1245
<A NAME="RA33703ST-37">37 </A>
Speier G.
Tyeklar Z.
J. Mol. Catal.
1980,
233
<A NAME="RA33703ST-38">38 </A>
Demmin TR.
Rogic MM.
J. Org. Chem.
1980,
45:
1153
<A NAME="RA33703ST-39">39 </A>
Bassett J.
Denney RC.
Jeffery GH.
Mendham J.
Vogels Textbook of Practical Organic Chemistry
4th ed.:
Longmann;
London:
1978.
<A NAME="RA33703ST-40">40 </A>
Walsh JG.
PhD Thesis
National University of Ireland Maynooth;
Ireland:
1992.
<A NAME="RA33703ST-41A">41a </A>
Rogic MM.
Demmin TR.
Hammond WB.
J. Am. Chem. Soc.
1976,
98:
7441
<A NAME="RA33703ST-41B">41b </A>
Rogic MM.
Swerdloff MD.
Demmin TR.
J. Am. Chem. Soc.
1981,
103:
5795
<A NAME="RA33703ST-42">42 </A>
Rogic MM.
Demmin TR.
J. Am. Chem. Soc.
1978,
100:
5472
<A NAME="RA33703ST-43">43 </A>
Finkbeiner H.
Hay AS.
Blanchard HS.
Endres GF.
J. Org. Chem.
1966,
31:
549
<A NAME="RA33703ST-44">44 </A>
Throughout the work 3,5-di-tert -butylcatechol is widely used as the substrate of choice. It is a cheap readily available
compound and the corresponding quinone is exceptionally stable in comparison with
other quinones and as a result less polymeric material is observed. However as a result
of the capricious nature of this substrate the results reported for 3,5-di-tert -butylcatechol are potentially not general to all substrates.
<A NAME="RA33703ST-45">45 </A>
Wiessler M.
Tetrahedron Lett.
1977,
18:
233
<A NAME="RA33703ST-46">46 </A>
Wiessler M.
Habilitationsschrift
Ruperto-Carola-Universtät zu Heidelberg;
Germany:
1978.
<A NAME="RA33703ST-47">47 </A>
Popkova NV.
Kobrina LS.
Yakobson GG.
Izv. Sib. Otd. Akad. Nauk. SSSR, Ser. Khim. Nauk
1978,
116 ; Chem. Abstr. 1979 , 90 , 54620
<A NAME="RA33703ST-48">48 </A>
Jaroszewski JW.
Ettlinger MG.
J. Org. Chem.
1982,
47:
1212
<A NAME="RA33703ST-49">49 </A>
The current Aldrich catalogue (2003-2004) has the high grade LTA 17 times more expensive
than the technical grade. High grade LTA is currently priced at £ 94.10 for 25 g.
The same quantity of technical grade LTA costs just £ 5.50
<A NAME="RA33703ST-50">50 </A>
Typical procedure: Catechol (1 equiv) was added slowly to a stirred solution of technical
grade (95%) LTA (22 equiv) in toluene-MeOH (8 mL/g substrate). The mixture became
deep red in colour initially and then darkened as the addition proceeded to finally
yield a deep red solution. After stirring overnight a pale yellow solution resulted.
The reaction mixture was evaporated and the red/yellow solid residue was treated with
Et2 O. The resultant white precipitate was filtered and to the filtrate ethylene glycol
(5 mL) was added. This prevented a black scum forming from the reaction of the residual
lead salts during work up. The filtrate was washed with water, NaHCO3 and water once more then dried over anhyd Na2 SO4 The solvent was evaporated and the crude product purified via column chromatography
on silica.
<A NAME="RA33703ST-51">51 </A>
Byrne LA.
Ph.D. Thesis
National University of Ireland, University College Dublin;
Irleand:
2003.
<A NAME="RA33703ST-52A">52a </A>
Seyden-Peyne J.
Reductions by the Alumino- and Borohydrides In Organic Synthesis
2nd ed.:
Wiley-VCH;
Chichester:
1997.
<A NAME="RA33703ST-52B">52b </A> See also:
Meyer GR.
J. Chem. Ed.
1981,
58:
628
<A NAME="RA33703ST-53">53 </A>
Appel R.
Angew. Chem., Int. Ed. Engl.
1975,
14:
801
<A NAME="RA33703ST-54A">54a </A>
Grieco PA.
Masaki Y.
J. Org. Chem.
1974,
39:
2135
<A NAME="RA33703ST-54B">54b </A>
Ohloff G.
Farnow H.
Schade G.
Chem. Ber.
1956,
98:
1549
<A NAME="RA33703ST-55A">55a </A>
Eskola P.
Hirsch JA.
J. Org. Chem.
1997,
62:
5732
<A NAME="RA33703ST-55B">55b </A>
Hutchins RO.
Masilamani D.
Maryanoff CA.
J. Org. Chem.
1976,
41:
1071
<A NAME="RA33703ST-56">56 </A>
Walsh JG.
Gilheany DG.
J. Heterocyl. Chem.
2002,
39:
1273
<A NAME="RA33703ST-57">57 </A>
Walsh JG.
Gilheany DG.
Heterocycles
2000,
41:
897
<A NAME="RA33703ST-58">58 </A>
Braye EH.
Hubel W.
Caplier I.
J. Am. Chem. Soc.
1961,
83:
4406
<A NAME="RA33703ST-59">59 </A>
Nicolau KC.
Skokotas G.
Maligres P.
Zuccarello G.
Schweiger EJ.
Toshima K.
Wendeborn S.
Angew. Chem., Int. Ed. Engl.
1989,
28:
1272
<A NAME="RA33703ST-60">60 </A>
Furlong PJ.
Ph.D. Thesis
National University of Ireland. University College Dublin;
Ireland:
1996.
<A NAME="RA33703ST-61">61 </A>
Byrne LA.
Furlong PJ.
Gilheany DG.
Synth Commun.
2004,
34:
issue 9
<A NAME="RA33703ST-62">62 </A>
Stork GA.
Grieco PA.
Gregson G. In Organic Synthesis
Vol. 6:
Noland WE.
Wiley-VCH;
Chichester:
1988.
p.638