References
<A NAME="RG36203ST-1A">1a</A>
Xu Z.-H.
Jie Y.-F.
Wang M.-X.
Huang Z.-T.
Synthesis
2002,
523
<A NAME="RG36203ST-1B">1b</A>
Brunerie P.
Célérier JP.
Huché M.
Lhommet G.
Synthesis
1985,
735
<A NAME="RG36203ST-1C">1c</A>
Nemes P.
Balázs B.
Tóth G.
Scheiber P.
Synlett
2000,
1327
<A NAME="RG36203ST-1D">1d</A>
Calvo L.
Gonzáles-Ortega A.
Sanudo MC.
Synlett
2002,
2450
<A NAME="RG36203ST-1E">1e</A>
Fustero S.
G. de la Torre M.
Jofré V.
Pérez-Carlón R.
Navarro A.
Simón-Fuentes A.
J. Org. Chem.
1998,
63:
8825
<A NAME="RG36203ST-1F">1f</A>
Fang FG.
Danishefsky SJ.
Tetrahedron Lett.
1989,
30:
3621
<A NAME="RG36203ST-2A">2a</A>
Marković R.
Baranac M.
Synlett
2000,
607
<A NAME="RG36203ST-2B">2b</A>
Marković R.
Dàmbaski Z.
Baranac M.
Tetrahedron
2001,
57:
5833
<A NAME="RG36203ST-3">3</A>
Rezgui F.
Amri H.
El Gaïed MM.
Tetrahedron
2003,
59:
1369
<A NAME="RG36203ST-4A">4a</A>
Marković R.
Baranac M.
Jovetić S.
Tetrahedron Lett.
2003,
44:
7087
<A NAME="RG36203ST-4B">4b</A>
In the case of thionation of thiazolidines 1b and 1c initially formed 1,2-dithioles rearrange to 1,2,4-dithiazole derivatives (ref.
[4a]
).
<A NAME="RG36203ST-5A">5a</A>
Kiddle J.
Green DLC.
Thompson CM.
Tetrahedron
1995,
51:
2851
<A NAME="RG36203ST-5B">5b</A>
Howard AS.
Gerrans GC.
Michael JP.
J. Org. Chem.
1980,
45:
1713
<A NAME="RG36203ST-6A">6a</A>
Greenhill JV.
Chem. Soc. Rev.
1977,
6:
277
<A NAME="RG36203ST-6B">6b</A>
Prugh J.
Deana AA.
Tetrahedron Lett.
1988,
29:
37
<A NAME="RG36203ST-7">7</A>
David O.
Blot J.
Bellec C.
Fargeau-Bellassoued M.-C.
Haviari G.
Célérier J.-P.
Lhommet G.
Gramain J.-C.
Gardette D.
J. Org. Chem.
1999,
64:
3122
<A NAME="RG36203ST-8">8</A>
Cimarelli C.
Palmieri G.
Bartoli G.
Tetrahedron: Asymmetry
1994,
5:
1455
<A NAME="RG36203ST-9A">9a</A>
Bartoli G.
Cupone G.
Dalpozzo R.
De Nino A.
Maiuolo L.
Procopio A.
Tagarelli A.
Tetrahedron Lett.
2002,
43:
7441
<A NAME="RG36203ST-9B">9b</A>
Bartoli G.
Cimarelli C.
Palmieri G.
J. Chem. Soc., Perkin Trans. 1
1994,
537
<A NAME="RG36203ST-10">10</A>
Palmieri G.
Cimarelli C.
Tetrahedron
1988,
54:
915
<A NAME="RG36203ST-11">11</A>
Typical Experimental Procedure: An appropriate 5-substituted-4-oxothiazolidine 1 (100 mg) dissolved in anhydrous EtOH (10 mL) was added dropwise at r.t. to the tenfold
molar excess of NaBH4 in EtOH (ca. 5 mL). When the hydrogen evolution had ceased the reaction mixture was
heated under reflux with stirring for a period of time required (2-3 h) to complete
the reaction (TLC). The reaction mixture was cooled, neutralized with NH4Cl and extracted with EtOAc. The combined extracts, washed with brine and dried, were
evaporated in vacuo. The residue was purified by column chromatography (SiO2, toluene-EtOAc, 10:0 → 8:2) to afford a pure product 5.
Spectroscopic data for (Z)-[5-(2-Hydroxyethyl)-4-oxothiazolidin-2-ylidene]-1-phenylethanone (5a): Colorless solid; mp 158-159 °C. 1H NMR (200 MHz, DMSO-d
6
): δ = 1.71-1.93 (m, 1 H, CH
AHBCHX), 2.14-2.30 (m, 1 H, CHA
H
BCHX); 3.58 (m, 2 H, CH
2OH), 4.09 (dd, J
1 = 9.5 Hz, J
2 = 4.2 Hz, 1 H, Hx), 4.82 (br s, 1 H, OH; signal disappears upon D2O addition), 6.72 (s, 1 H, =CH), 7.47-7.62 (m, 3 H, p-Ph and m-Ph), 7.83 (dd, 1 H, J
1 = 7.6 Hz, J
2 = 1.6 Hz, o-Ph), 11.85 (br s, 1 H, NH; signal disappears upon D2O addition). 13C NMR (50.3 MHz, DMSO-d
6): δ = 35.7 (CHAHB), 44.1 (CHX), 58.6 (CH2OH), 94.5 (=CH), 127.2 (m-Ph), 129.0 (o-Ph), 132.4 (p-Ph), 138.5 (C1-Ph), 161.2 (C=), 177.3 (COring), 187.3 (COexo). IR (KBr): 3453, 3194, 3068, 2924, 1685, 1631, 1577, 1517, 1468, 1364, 1295, 1198
cm-1. MS (EI): m/z (rel. intensity%) = 263 (100) [M+], 232 (86), 178 (8), 146 (20), 105 (80). UV (DMSO): l
max (e) = 335.0 (18000) nm. Anal. Calcd for C13H13NO3S: C, 59.30; H, 4.98; N, 5.32; S, 12.18. Found: C, 59.03; H, 4.92; N, 5.33; S, 12.24.
<A NAME="RG36203ST-12">12</A>
Greenhill JV.
Ramli M.
Tomassini T.
J. Chem. Soc., Perkin Trans. 1
1975,
588
<A NAME="RG36203ST-13">13</A>
Strong intramolecular 1,5-interactions of nonbonded S and O within the SC=CC=O subunit
with cis-configuration of C=C bond additionally stabilize the enaminone structure.
<A NAME="RG36203ST-14A">14a</A>
Brown SM.
Rapoport H.
J. Org. Chem.
1963,
28:
3261
<A NAME="RG36203ST-14B">14b</A>
Brown HC.
Narasimhan S.
Choi YM.
J. Org. Chem.
1982,
47:
4702
<A NAME="RG36203ST-14C">14c</A>
Hajós A.
Complex Hydrides and Related Reducing Agents in Organic Synthesis
Elsevier Scientific Publishing Company;
New York:
1979.
Chap. 5.
<A NAME="RG36203ST-15A">15a</A>
Kikugawa Y.
Ikegami S.
Yamada S.
Chem. Pharm. Bull.
1969,
17:
98
<A NAME="RG36203ST-15B">15b</A> For a reduction of lactams to amines by NaBH4, see:
Mandal SB.
G iri VS.
Sabeena MS.
Pakrashi SC.
J. Org. Chem.
1988,
53:
4236
<A NAME="RG36203ST-16">16</A>
Methylation of (Z)-5a led to alcohol 13f, which, in a one-pot sequence, comprising reduction followed by cyclization, was
transformed into the identical bicylic thiazolidine 6f in moderate yield (Scheme
[4]
).
<A NAME="RG36203ST-17">17</A>
(Z)-(N-Methyltetrahydrofuro[2,3-d]thiazol-2-ylidene)-1-phenylethanone (6f): Colorless solid; mp 121-122 °C. 1H NMR (200 MHz, CDCl3): δ = 2.12-2.43 (m, 2 H, CH
A
H
BCHXS), 3.10 (s, 1 H, NCH3), 3.77-3.89 (m, 1 H, OCHYCH
XS), 4.02 (t, 1 H, J = 8.0 Hz, OCH
QHZ), 4.12 (t, 1 H, J = 7 Hz, OCHQ
H
Z), 5.67 (d, 1 H, J
XY = 6.6 Hz, OCH
YCHXS), 6.08 (s, 1 H, =CH), 7.36-7.47 (m, 3 H, m-Ph, p-Ph), 7.90-7.95 (m, 2 H, o-Ph). 13C NMR (50.3 MHz, CDCl3): δ = 33.7 (NCH3), 35.2 (CHAHB), 44.6 (CHX), 65.8 (CH2O), 87.5 (=CH), 99.1 (CHY), 127.2 (o-Ph), 128.2 (m-Ph), 131.0 (p-Ph), 139.7 (C1Ph), 165.7 (C=), 186.9 (CO). IR (KBr): 3530, 3412, 2974, 2939, 1602, 1571, 1525, 1433,
1355, 1264, 1213, 1028, 973, 727 cm-1. MS (EI, 70 eV): m/z (rel. intensity) = 261 (57) [M+], 260 (100), 245 (34), 191 (20), 184 (42), 163 (32), 105 (97), 86 (39), 82 (58),
51 (26). UV (DMSO): l
max (e) = 337.9 (19 700) nm. Anal. Calcd for C14H15NO2S: C, 64.34; H, 5.79; N, 5.36; S, 12.27. Found: C, 64.24; H, 5.82; N, 5.30; S, 12.59.
<A NAME="RG36203ST-18">18</A>
In all push-pull thiazolidines 1 and 6 high field 13C chemical shifts (85-96 ppm) for the acceptor-substituted C(α) atoms, and low field
shifts (161-169 ppm) for the donor-substituted C(β) atoms are typical.
<A NAME="RG36203ST-19A">19a</A>
Mueller JL.
Gibson MS.
Hartman JS.
Can. J. Chem.
1996,
74:
1329
<A NAME="RG36203ST-19B">19b</A>
Kleinpeter E.
Thomas S.
Uhlig G.
Rudorf W.-D.
Magn. Reson. Chem.
1993,
31:
714