Plant Biol (Stuttg) 2004; 6(3): 307-318
DOI: 10.1055/s-2004-820874
Original Paper

Georg Thieme Verlag Stuttgart KG · New York

Development of Leaf Photosynthetic Parameters in Betula pendula Roth Leaves: Correlations with Photosystem I Density

H. Eichelmann1 , V. Oja1 , B. Rasulov1 , E. Padu1 , I. Bichele1 , H. Pettai1 , Ü. Niinemets1 , A. Laisk1
  • 1Department of Plant Physiology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
Further Information

Publication History

Publication Date:
14 May 2004 (online)

Abstract

The global modelling of photosynthesis is based on exact knowledge of the leaf photosynthetic machinery. The capacities of partial reactions of leaf photosynthesis develop at different rates, but it is not clear how the development of photoreactions and the Calvin cycle are co-ordinated. We investigated the development of foliar photosynthesis in the temperate deciduous tree Betula pendula Roth. using a unique integrated optical/gas exchange methodology that allows simultaneous estimation of photosystem I and II (PS I and PS II) densities per leaf area, interphotosystem electron transport activities, and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) kinetic properties. We combined these measurements with in vitro determinations of Rubisco, soluble protein and chlorophyll contents. We observed a strong increase in leaf photosynthetic capacity in developing leaves per leaf area, as well as per dry mass, that was paralleled by accumulation of leaf Rubisco. Enhanced mesophyll conductance was the outcome of increased carboxylation capacity and increased CO2 diffusion conductance. However, Rubisco was only partly activated in the leaves, according to in vivo measurements of Rubisco kinetics. The amount of active Rubisco increased in proportion with development of PS I, probably through a direct link between Rubisco activase and PS I electron transport. Since the kinetics for post-illumination P700 re-reduction did not change, the synthesis of cytochrome b6f complex was also proportional to PS I. The synthesis of PS II began later and continued for several days after reaching the full PS I activity, but leaf chlorophyll was shared equally between the photosystems. Due to this, the antenna of PS II was very large and not optimally organized, leading to greater losses of excitation and lower quantum yields in young leaves. We conclude that co-ordinated development of leaf photosynthesis is regulated at the level of PS I with subordinated changes in PS II content and Rubisco activation.

References

  • 1 Bradford M. M.. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.  Anal. Biochem.. (1976);  72 248-254
  • 2 Campbell W. J., Ogren W. L.. Light activation of Rubisco by Rubisco activase and thylakoid membranes.  Plant Cell Physiol.. (1992);  33 751-756
  • 3 Campbell W. J., Ogren W. L.. Electron transport through photosystem I stimulates light activation of ribulose bisphosphate carboxylase/oxygenase (Rubisco) by rubisco activase.  Plant Physiol.. (1990);  94 479-484
  • 59 Čatsky J., Solárová J., Pospíšilová J., Tichá I.. Conductances for carbon dioxide transfer in the leaf. Šesták, Z., ed. Tasks for Vegetation Science, Vol. 11, Photosynthesis During Leaf Development. Dordrecht; Dr. W. Junk Publishers (1985): 217-249
  • 60 Čatsky J., Šesták Z.. Photosynthesis during leaf development. Pessarakli, M., ed. Books in Soils, Plants, and the Environment. Handbook of Photosynthesis. New York; Marcel Dekker (1997): 633-660
  • 4 Dengler N. G.. Comparative histological basis of sun and shade leaf dimorphism in Helianthus annus. .  Can. J. Bot.. (1980);  58 717-730
  • 5 Eichelmann H., Laisk A.. Ribulose-1,5-bisphosphate carboxylase/oxygenase content, assimilatory charge and mesophyll conductance in leaves.  Plant Physiol.. (1999);  119 179-189
  • 6 Eichelmann H., Oja V., Rasulov B., Padu E., Bichele I., Pettai H., Tulva I., Kasparova I., Vapaavuori E., Laisk A.. Photosynthetic parameters of birch (Betula pendula Roth) leaves growing in normal and in CO2- and O3-enriched atmospheres.  Plant Cell Environ.. (2004);  27 479-495
  • 7 Evans J. R., Seemann J. R.. Differences between wheat genotypes in specific activity of ribulose-1,5-bisphosphate carboxylase and relationship to photosynthesis.  Plant Physiol.. (1984);  74 759-764
  • 8 Flachmann R., Zhu G., Jensen R. G., Bohnert H. J.. Mutations in the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase increase the formation of the misfire product xylulose-1,5-bisphosphate.  Plant Physiol.. (1997);  114 131-136
  • 9 Fukayama H., Uchida N., Azuma T., Yasuda T.. Light dependent activation of CO2 assimilation and the ratio of Rubisco activase to Rubisco during leaf aging of rice (Oryza sativa). .  Physiol. Plant. (1998);  104 541-548
  • 10 Fukayama H., Uchida N., Azuma T., Yasuda T.. Relationships between photosynthetic activity and the amounts of Rubisco activase and Rubisco in rice leaves from emergence through senescence.  Jap. J. Crop Sci.. (1996);  65 296-302
  • 11 Gobets B., van Grondelle R.. Energy transfer and trapping in photosystem I. Biochim.  Biophys. Acta. (2001);  1507 80-99
  • 12 Hammond E. T., Andrews T. J., Woodrow I. E.. Regulation of ribulose-1,5-bisphosphate carboxylase/oxygenase by carbamylation and 2-carboxyarabinitol 1-phosphate in tobacco: insights from studies of antisense plants containing reduced amounts of Rubisco activase.  Plant Physiol.. (1998);  118 1463-1471
  • 13 Hanba Y. T., Miyazawa S. I., Kogami H., Terashima I.. Effects of leaf age on internal CO2 transfer conductance and photosynthesis in tree species having different types of shoot phenology.  Aust. J. Plant Physiol.. (2001);  28 1075-1084
  • 14 Harley P. C., Loreto F., Di Marco G., Sharkey T. D.. Theoretical considerations when estimating the mesophyll conductance to CO2 flux by analysis of the response of photosynthesis to CO2.  Plant Physiol.. (1992);  98 1429-1436
  • 15 Hikosaka K., Murakami A., Hirose T.. Balancing carboxylation and regeneration of ribulose-1,5-bisphosphate in leaf photosynthesis: temperature acclimation of an evergreen tree Quercus myrsinaefolia. .  Plant Cell Environ.. (1999);  22 841-849
  • 16 Horton P.. Nonphotochemical quenching of chlorophyll fluorescence. Jennings, R. C. et al., eds. Light As Energy Source and Information Carrier in Plant Physiology. New York; Plenum Press (1996): 99-111
  • 17 Jansson S., Stefánsson H., Nyström U., Gustafsson P., Albertsson P.-A.. Antenna protein composition of PS I and PS II in thylakoid sub-domains.  Biochim. Biophys. Acta. (1997);  1320 297-309
  • 18 Karim M. A., Fracheboud Y., Stamp P.. Photosynthetic activity of developing leaves of Zea mays is less affected by heat stress than of developed leaves.  Physiol. Plant. (1999);  105 685-693
  • 19 Kursar T. A., Coley P. D.. Delayed development of the photosynthetic apparatus in tropical rain forest species.  Funct. Ecol.. (1992 a);  6 411-422
  • 20 Kursar T. A., Coley P. D.. Delayed greening in tropical leaves: an antiherbivore defense?.  Biotropica. (1992 b);  24 256-262
  • 21 Kursar T. A., Coley P. D.. Photosynthetic induction times in shade-tolerant species with long and short-lived leaves.  Oecologia. (1993);  93 165-170
  • 22 Laisk A., Loreto F.. Determining photosynthetic parameters from leaf CO2 exchange and chlorophyll fluorescence: Rubisco specificity factor, dark respiration in the light, excitation distribution between photosystems, alternative electron transport and mesophyll diffusion resistance.  Plant Physiol.. (1996);  110 903-912
  • 23 Laisk A., Oja V.. Dynamic gas exchange of leaf photosynthesis. Measurement and interpretation. Canberra; CSIRO (1998)
  • 24 Laisk A., Oja V., Kiirats O.. Assimilatory power (post-illumination CO2 uptake) in leaves - measurement, environmental dependencies and kinetic properties.  Plant Physiol.. (1984);  76 723-729
  • 25 Laisk A., Oja V., Rasulov B., Eichelmann H., Sumberg A.. Quantum yields and rate constants of photochemical and non-photochemical excitation quenching. Experiment and model.  Plant Physiol.. (1997);  115 803-815
  • 26 Laisk A., Oja V., Rasulov B., Rämma H., Eichelmann H., Kasparova I., Pettai H., Padu E., Vapaavuori E.. A computer-operated routine of gas exchange and optical measurements to diagnose photosynthetic apparatus in leaves.  Plant Cell Environ.. (2002);  25 923-943
  • 27 Loreto F., Harley P. C., Di Marco G., Sharkey T. D.. Estimation of mesophyll conductance to CO2 flux by three different methods.  Plant Physiol.. (1992);  98 1437-1443
  • 28 Makino A., Mae T., Ohira K.. Relation between nitrogen and ribulose-1,5-bisphosphate carboxylase in rice leaves from emergence through senescence.  Plant and Cell Physiol.. (1984);  25 429-437
  • 29 Melis A.. Dynamics of photosynthetic membrane composition and function.  Biochim. Biophys. Acta. (1991);  1058 87-106
  • 30 Melis A.. Excitation energy transfer: functional and dynamic aspects of lhc (ab) proteins. Ort, D. R. and Yocum, C. F., eds. Advances in Photosynthesis, Vol. 4, Oxygenic Photosynthesis: the Light Reactions. Dordrecht; Kluwer Academic Publishers (1996): 523-538
  • 31 Miyazawa S.-I., Satomi S., Terashima I.. Slow leaf development of evergreen broad-leaved tree species in Japanese warm temperate forests.  Ann. Bot.. (1998);  82 859-869
  • 32 Miyazawa S.-I., Terashima I.. Slow development of leaf photosynthesis in an evergereen broad-leaved tree, Castanopsis sieboldii: relationships between leaf anatomical characteristics and photosynthetic rate.  Plant Cell Environ.. (2001);  24 279-291
  • 33 Niinemets Ü., Kull O., Tenhunen J. D.. Within canopy variation in the rate of development of photosynthetic capacity is proportional to integrated quantum flux density in temperate deciduous trees.  Plant Cell Environ.. (2004);  27 293-313
  • 34 Niinemets Ü., Tenhunen J. D.. A model separating leaf structural and physiological effects on carbon gain along light gradients for the shade-tolerant species Acer saccharum. .  Plant Cell Environ.. (1997);  20 845-866
  • 36 Noormets A., Sõber A., Pell E. J., Dickson R. E., Podila G. K., Sõber J., Isebrands J. G., Karnosky D. F.. Stomatal and non-stomatal limitation to photosynthesis in two trembling aspen (Populus tremuloides Michx.) clones.  Plant Cell Environ.. (2001);  24 327-336
  • 54 Ögren E.. Convexity of the photosynthetic light response curve in relation to intensity and direction of light during growth.  Plant Physiol.. (1993);  101 1013-1019
  • 55 Öquist G., Brunes L., Hällgren J.-E.. Photosynthetic efficiency during ontogenesis of leaves of Betula pendula. .  Plant Cell Environ.. (1982);  5 17-21
  • 37 Oja V., Laisk A.. Oxygen yield from single turnover flashes in leaves:non-photochemical excitation quenching and the number of active PSII.  Biochim. Biophys. Acta. (2000);  1460 291-301
  • 61 Oja V., Eichelmann H., Peterson R. B., Rasulov B., Laisk A.. Deciphering the 820 nm signal: redox state of donor side and quantum yield of Photosystem I in leaves.  Photosynth. Res.. (2003);  78 1-15
  • 38 Peterson R., Oja V., Laisk A.. Chlorophyll fluorescence at 680 and 730 nm and its relationship to photosynthesis.  Photosynth. Res.. (2001);  70 185-196
  • 39 Portis Jr. A. R.. Regulation of ribulose 1,5-bisphosphate carboxylase/oxygenase activity.  Annu. Rev. Plant Physiol. Plant Mol. Biol.. (1992);  43 415-437
  • 40 Prasad N. K., Srivastava G. C.. Partial light reactions and carbon fixation in relation to leaf ontogeny and in bracts of sunflower (Helianthus annuus L.).  Photosynthetica. (1991);  25 499-503
  • 41 Pääkkönen E., Holopainen T., Kärenlampi L.. Variation in ozone sensitivity among clones of Betula pendula and Betula pubescens. .  Environmental Pollution. (1997);  95 37-44
  • 42 Ruuska S., Andrews J. T., Badger M. R., Hudson G. S., Laisk A., Price D., Caemmerer S. V.. The interplay between limiting processes in C3 photoynthesis studied by rapid-response gas exchange using transgenic tobacco impaired in photosynthesis.  Austral. J. Plant Physiol.. (1998);  25 859-870
  • 43 Salvucci M. E., Ogren W. L.. The mechanism of Rubisco activase: insights from studies of the properties and structure of the enzyme.  Photosynth. Res.. (1996);  47 1-11
  • 56 Šesták Z.. Chlorophylls and carotenoids during leaf ontogeny. Šesták, Z., ed. Tasks for Vegetation Science, Vol. 11, Photosynthesis During Leaf Development. Dordrecht, Boston, Lancaster; Dr. W. Junk Publishers (1985 a): 76-106
  • 57 Šesták Z.. Changes in electron transport chain composition, and activities of photosystems and photophosphorylation during leaf ontogeny. Šesták, Z., ed. Tasks for Vegetation Science, Vol. 11, Photosynthesis During Leaf Development. Dordrecht, Boston, Lancaster; Dr. W. Junk Publishers (1985 b): 128-144
  • 44 Šesták Z., Tichá I., Čatsky J., Solárová J., Pospíšilová J., Hodánová D.. Integration of photosynthetic characteristics during leaf development. Šesták, Z., ed. Tasks for Vegetation Science, Vol. 11, Photosynthesis During Leaf Development. Dordrecht, Boston, Lancaster; Dr. W. Junk Publishers (1985 c): 263-286
  • 58 Špunda V., Čajánek M., Ilík P., Kalina J., Nauš J.. Appearance of longwavelength excitation form of chlorophyll a in PS I fluorescence during greening of barley leaves under continuous light.  J. Photochem. Photobiol. B.. (1997);  40 149-153
  • 45 Takeuchi A., Yamaguchi T., Hidema J., Strid A., Kumagai T.. Changes in synthesis and degradation of Rubisco and LHCII with leaf age in rice (Oryza sativa L.) growing under supplementary UV-B radiation.  Plant Cell Environ.. (2002);  25 695-706
  • 46 Tichá I.. Ontogeny of leaf morphology and anatomy. Šesták, Z., ed. Tasks for Vegetation Science, Vol. 11, Photosynthesis During Leaf Development. Dordrecht, Boston, Lancaster; Dr. W. Junk Publishers (1985): 16-50
  • 47 Valjakka M., Luomala E.-M., Kangasjärvi J., Vapaavuori E.. Expression of photosynthesis- and senescence-related genes during leaf development and senescence in silver birch (Betula pendula) seedlings.  Physiol. Plant. (1999);  106 302-310
  • 48 Vapaavuori E., Oksanen T., Holopainen J. K., Holopainen T., Heiskanen J., Julkunen-Tiitto R., Kasurinen A., Oksanen E., Peltonen P., Poteri M., Tapani R., Riikonen J., Syrjälä L.. Open-top chamber fumigation of cloned silver birch (Betula pendula Roth.) trees to elevated CO2 and ozone: description of the fumigation system and the experimental site. The Finnish Forest Research Institute, Research Papers 838. (2002)
  • 49 Vernon L. P.. Spectrophotometric determination of chlorophylls and pheophytins in plant extracts.  Analytical Chemistry. (1960);  32 188-194
  • 50 Wilson K. B., Baldocchi D. D., Hanson P. J.. Spatial and seasonal variability of photosynthetic parameters and their relationship to leaf nitrogen in a deciduous forest.  Tree Physiol.. (2000);  20 565-578
  • 51 Wilson K. B., Baldocchi D. D., Hanson P. J.. Leaf age affects the seasonal pattern of photosynthetic capacity and net ecosystem exchange of carbon in a deciduous forest.  Plant Cell Environ.. (2001);  24 571-583
  • 52 Woodrow I. E., Berry J. A.. Enzymatic regulation of photosynthetic CO2 fixation in C3 plants.  Ann. Rev. Physiol. Plant Mol. Biol.. (1988);  39 533-594
  • 53 Zhang N., Kallis R. P., Ewy R. G., Portis  Jr. A. R.. Light modulation of Rubisco in Arabidopsis requires a capacity for redox regulation of the larger Rubisco activase isoform.  Proc. Natl. Acad. Sci. USA. (2002);  99 3330-3334
  • 35 Zhang N., Portis A. R.. Mechanism of light regulation of Rubisco: A specific role for the larger Rubisco activase isoform reductive activation by thioredoxin f.  Proc. Natl. Acad. Sci.. (1999);  96 9438-9444

A. Laisk

Department of Plant Physiology
Institute of Molecular and Cell Biology
University of Tartu

Riia 23

Tartu 51010

Estonia

Email: alaisk@ut.ee

Guest Editor: F. Loreto

    >