References
<A NAME="RS01504ST-1A">1a</A>
Pilli RA.
Ferreira de Olivera MC.
Nat. Prod. Rep.
2000,
17:
117
<A NAME="RS01504ST-1B">1b</A>
Lin W.-H.
Ye Y.
Xu R.-S.
J. Nat. Prod.
1992,
55:
571
<A NAME="RS01504ST-2A">2a</A>
Qin GW.
Xu RS.
Med. Res. Rev.
1998,
18:
375
<A NAME="RS01504ST-2B">2b</A>
Ye Y.
Qin G.-W.
Xu R.-S.
Phytochemistry
1994,
37:
1201
<A NAME="RS01504ST-2C">2c</A>
Ye Y.
Qin G.-W.
Xu R.-S.
Phytochemistry
1994,
37:
1205
<A NAME="RS01504ST-2D">2d</A>
Ye Y.
Qin G.-W.
Xu R.-S.
J. Nat. Prod.
1994,
57:
655
<A NAME="RS01504ST-2E">2e</A>
Brem B.
Seger C.
Pacher P.
Hofer O.
Vajrodaya S.
Greger H.
J. Agric. Food Chem.
2002,
50:
6383
<A NAME="RS01504ST-3A">3a</A> Tuberostemonine:
Wipf P.
Rector SR.
Takahashi H.
J. Am. Chem. Soc.
2002,
124:
14848
<A NAME="RS01504ST-3B">3b</A> For stenine see the following:
Morimoto Y.
Iwahashi M.
Nishida K.
Hayashi Y.
Shirahama H.
Angew. Chem., Int. Ed. Engl.
1996,
35:
904
<A NAME="RS01504ST-3C">3c</A>
Morimoto Y.
Iwahashi M.
Kinoshita T.
Nishida K.
Chem.-Eur. J.
2001,
7:
4107
<A NAME="RS01504ST-3D">3d</A>
Wipf P.
Kim Y.
Goldstein DM.
J. Am. Chem. Soc.
1995,
117:
11106
<A NAME="RS01504ST-3E">3e</A>
Golden JE.
Aube J.
Angew. Chem. Int. Ed.
2002,
41:
4316
<A NAME="RS01504ST-3F">3f</A>
Chen CY.
Hart DJ.
J. Org. Chem.
1993,
58:
3840
<A NAME="RS01504ST-3G">3g</A>
Ginn JD.
Padwa A.
Org. Lett.
2002,
4:
1515
For other stemona alkaloids see the following:
<A NAME="RS01504ST-3H">3h</A>
Williams DR.
Fromhold MG.
Earley JD.
Org. Lett.
2001,
3:
2721
<A NAME="RS01504ST-3I">3i</A>
Kende AS.
Martin Hernando JI.
Milbank JBJ.
Tetrahedron
2002,
58:
61
<A NAME="RS01504ST-3J">3j</A>
Martin SF.
Barr KJ.
Smith DW.
Bur SK.
J. Am. Chem. Soc.
1999,
121:
6990
Enantioselective synthesis:
<A NAME="RS01504ST-4A">4a</A>
Gurjar MK.
Reddy DS.
Tetrahedron Lett.
2002,
43:
295
<A NAME="RS01504ST-4B">4b</A>
Jacobi PA.
Lee K.
J. Am. Chem. Soc.
2000,
122:
4295
<A NAME="RS01504ST-4C">4c</A>
Kinoshita A.
Mori M.
Heterocycles
1997,
46:
287
<A NAME="RS01504ST-4D">4d</A>
Kinoshita A.
Mori M.
J. Org. Chem.
1996,
61:
8356
<A NAME="RS01504ST-4E">4e</A>
Williams DR.
Reddy JP.
Amato GS.
Tetrahedron Lett.
1994,
35:
6417
For racemic synthesis see the following:
<A NAME="RS01504ST-4F">4f</A>
Jacobi PA.
Lee K.
J. Am. Chem. Soc.
1997,
119:
3409
<A NAME="RS01504ST-4G">4g</A>
Kohno Y.
Narasaka K.
Bull. Chem. Soc. Jpn.
1996,
69:
2063
<A NAME="RS01504ST-5">5</A>
Ester 10 is commercially available.
<A NAME="RS01504ST-6">6</A>
Acevedo CM.
Kogut EF.
Lipton MA.
Tetrahedron
2001,
57:
6353 . The alcohol is also commercially available
<A NAME="RS01504ST-7A">7a</A>
Ref. 6.
<A NAME="RS01504ST-7B">7b</A>
Frieman BA.
Bock CW.
Bhat KL.
Heterocycles
2001,
55:
2099
<A NAME="RS01504ST-8">8</A> For an example of alkylation of protected pyroglutamyl alcohol see:
Sato Y.
Saito N.
Mori M.
Tetrahedron
1998,
54:
1153 ; also see refs. 4b, 4d
For stereoselective olefination of prolinal derivatives see:
<A NAME="RS01504ST-9A">9a</A>
Langois N.
Radom M.-O.
Tetrahedron Lett.
1998,
39:
857
<A NAME="RS01504ST-9B">9b</A>
Mulzer J.
Shanyoor M.
Tetrahedron Lett.
1993,
34:
6545
<A NAME="RS01504ST-9C">9c</A>
Moriwake T.
Hamano S.
Miki D.
Saito S.
Torii S.
Chem. Lett.
1986,
815
<A NAME="RS01504ST-9D">9d</A>
Clark JS.
Hodgson PB.
Goldsmith MD.
Blake AJ.
Cooke PA.
Street LJ.
J. Chem. Soc., Perkin Trans. 1
2001,
3325
<A NAME="RS01504ST-9E">9e</A>
Lee E.
Li KS.
Lim J.
Tetrahedron Lett.
1996,
37:
1445
For conjugate addition to γ-amino alkenoates with varied levels of syn selectivity see:
<A NAME="RS01504ST-10A">10a</A>
Moriwake T.
Hamano S.
Saito S.
Heterocycles
1988,
27:
1135
<A NAME="RS01504ST-10B">10b</A>
Le Coz S.
Mann A.
Thareau F.
Taddei M.
Heterocycles
1993,
36:
2073
<A NAME="RS01504ST-10C">10c</A>
Reetz MT.
Röhrig D.
Angew. Chem., Int. Ed. Engl.
1989,
28:
1706
<A NAME="RS01504ST-10D">10d</A>
Jako I.
Uiber P.
Mann A.
Taddei M.
Wermuth CG.
Tetrahedron Lett.
1990,
31:
1011
<A NAME="RS01504ST-10E">10e</A>
Jako I.
Uiber P.
Mann A.
Wermuth CG.
Boulanger T.
Norberg B.
Evrard G.
Durant F.
J. Org. Chem.
1991,
56:
5729
<A NAME="RS01504ST-10F">10f</A>
Hanessian S.
Sumi K.
Synthesis
1991,
1083
<A NAME="RS01504ST-10G">10g</A>
Hanessian S.
Demont E.
van Otterlo WAL.
Tetrahedron Lett.
2000,
41:
4999
<A NAME="RS01504ST-10I">10i</A>
Hanessian S.
Wang W.
Gai Y.
Tetrahedron Lett.
1996,
37:
7477
<A NAME="RS01504ST-10J">10j</A>
Paz MM.
Sardina FJ.
J. Org. Chem.
1993,
58:
6990
For examples of highly diastereoselective conjugate additions of copper reagents to
γ-substituted alkenoates and discussions on stereoselectivity in these reactions see:
<A NAME="RS01504ST-11A">11a</A>
Yamamoto Y.
Chounan Y.
Nishii S.
Ibuka T.
Kitahara H.
J. Am. Chem. Soc.
1992,
114:
7652
<A NAME="RS01504ST-11B">11b</A>
Roush WR.
Lesur BM.
Tetrahedron Lett.
1983,
24:
2231
<A NAME="RS01504ST-11C">11c</A>
Roush WR.
Michaelides MR.
Tai DF.
Lesur BM.
Chong WKM.
Harris DJ.
J. Am. Chem. Soc.
1989,
111:
2984
<A NAME="RS01504ST-12">12</A>
Procedure for Conjugate Addition: Lithium bromide (2.59 g, 30.1 mmol, 6 equiv) and CuBr·DMS (3.059 g, 15.0 mmol) were
placed in a dry round bottomed flask. THF (35 mL) was added to the solids and the
reaction mixture was cooled to -78 °C. Vinyl magnesium bromide (30 mL, 0.977 molar
solution in THF, 6 equiv) was added dropwise. After stirring for 30 min at the same
temperature, ester 8 (1.1072 g, 5 mmol) in THF (10 mL) was added dropwise and the resultant solution was
stirred at the same temperature for 10 min and at -40 °C for 50 min. The reaction
was quenched with NH4Cl solution and extracted with Et2O repeatedly. The combined extracts were washed with brine, dried over Na2SO4 and concentrated under reduced pressure. The concentrated residue was purified by
silica gel column chromatography using EtOAc and hexane (EtOAc-hexane, 1:1) to give
the ester 7 (1.02 g, 81%). 1H NMR (500 MHz, CDCl3): δ = 1.69-1.76 (m, 1 H), 1.95-2.04 (m, 1 H), 2.25-2.39 (m, 4 H), 2.29 (d, J = 7.0 Hz, 2 H), 2.93 (m, 1 H), 3.05-3.11 (m, 1 H), 3.66 (s, 3 H), 3.75-3.84 (m, 2
H), 5.04 (d, J = 10.0 Hz, 1 H), 5.08 (d, J = 17.5 Hz, 1 H), 5.18 (dd, J = 13.5, 3 Hz, 2 H), 5.73 (m, 2 H). 13C NMR (125 MHz, CDCl3): δ = 19.5, 30.4, 31.7, 32.4, 39.9, 41.3, 52.1, 60.0, 117.3, 117.9, 135.3, 136.7,
172.7, 175.6. IR (neat): 1733, 1674 cm-1. [α]D
25 +17.3 (c = 1.0, MeOH). HRMS: m/z calcd for C14H21NO3Na+: 274.1413; found: 274.1410. The stereochemistry at C-9 was unambiguously established
at a later stage (compounds 15 and 17).
<A NAME="RS01504ST-13">13</A>
Interestingly, conjugate addition to the corresponding Z-ester gave a 2:1 mixture of diastereomers with 7 as the major product (data not shown).
<A NAME="RS01504ST-14A">14a</A> For recent reviews on ring-closing metathesis see:
Trnka TM.
Grubbs RH.
Acc. Chem. Res.
2001,
34:
18
<A NAME="RS01504ST-14B">14b</A> Also see:
Fürstner A.
Angew. Chem. Int. Ed.
2000,
39:
3012
For the formation of 7-membered azacycles using RCM see the following:
<A NAME="RS01504ST-14C">14c</A>
Turling CA.
Holmes AB.
Markwell RE.
Pearson ND.
J. Chem. Soc., Perkin Trans. 1
1999,
1695
<A NAME="RS01504ST-14D">14d</A>
Barrett AGM.
Ahmed M.
Baker SP.
Baugh SPD.
Braddock DC.
Procopiou PA.
White AJP.
Williams DJ.
J. Org. Chem.
2000,
65:
3716
<A NAME="RS01504ST-14E">14e</A>
Martin SF.
Chen H.-J.
Courtney AK.
Liao Y.
Pätzel M.
Ramser MN.
Wagman AS.
Tetrahedron
1996,
52:
7251
<A NAME="RS01504ST-14F">14f</A>
Colombo L.
Di Giacomo M.
Vinci V.
Colombo M.
Manzoni L.
Scolastico C.
Tetrahedron
2003,
59:
4501
<A NAME="RS01504ST-14G">14g</A>
Vo-Thanh G.
Boucard V.
Sauriat-Dorizon H.
Guibe F.
Synlett
2001,
37
<A NAME="RS01504ST-14H">14h</A>
Lim SH.
Ma S.
Beak P.
J. Org. Chem.
2001,
66:
9056
<A NAME="RS01504ST-14I">14i</A>
Beal LM.
Liu B.
Chu W.
Moeller KD.
Tetrahedron
2000,
56:
10113
<A NAME="RS01504ST-14J">14j</A>
Hoffmann T.
Lanig H.
Waibel R.
Gmeiner P.
Angew. Chem. Int. Ed.
2001,
40:
3361
<A NAME="RS01504ST-14K">14k</A>
Grossmith CE.
Senia F.
Wagner J.
Synlett
1999,
1660
<A NAME="RS01504ST-15">15</A>
Preparation of the Tricyclic Lactam 6: The iodolactone 17 (0.748 g, 2.2 mmol) was dissolved in degassed toluene (75 mL) in a two-neck round-bottomed
flask fitted with a reflux condenser and a rubber septum. Tributyltin hydride (0.722
mL, 2.68 mmol) was added and the reaction heated to 80 °C. A solution of AIBN (60
mg) in toluene (5 mL) was added to the reaction mixture four times with the interval
of 1 h. The resultant solution was refluxed for 10 h. The solvent was removed and
the residue was chromatographed over silica gel to give 6 as a highly viscous liquid that solidified upon cooling (0.321 g, 70%); mp 42-43
°C. 1H NMR (500 MHz, CDCl3): δ = 1.51-1.60 (m, 2 H), 1.70 (q, J = 10.5 Hz, 1 H), 1.83-1.85 (m, 1 H), 2.02-2.08 (m, 1 H), 2.36-2.41 (m, 4 H), 2.47-2.53
(m, 1 H), 2.60-2.70 (m, 1 H), 2.76-2.87 (m, 1 H), 4.0 (dt, J = 6.0, 10.5 Hz, 1 H), 4.11-4.14 (m, 1 H), 4.27 (dt, J = 3.0, 10.5 Hz, 1 H). 13C NMR (125 MHz, CDCl3): δ = 22.9, 25.7, 30.8, 31.2, 34.8, 40.4, 45.1, 56.3, 80.0, 174.3, 174.9. [α]D
25 -91.9 (c = 1.0, CHCl3). HRMS: m/z calcd for C11H15NO3Na: 232.0944; found: 232.0940.
<A NAME="RS01504ST-16">16</A>
Also see ref. 4c for a similar reduction and establishment of stereocenter at C-9
and C-10.
<A NAME="RS01504ST-17">17</A>
Lactone 6 could also be methylated to provide C-9, C-10 diepi stemoamide (data not shown).
<A NAME="RS01504ST-18">18</A>
Mp: 185-186 °C. 1H NMR (500 MHz, CDCl3): δ = 1.31 (d, J = 6.9 Hz, 3 H), 1.50-1.58 (m, 2 H), 1.72 (quint, J = 10.7 Hz, 1 H), 1.85-1.90 (m, 1 H), 2.0-2.10 (m, 1 H), 2.38-2.45 (m, 4 H), 2.60
(dq, J = 6.9, 12.5 Hz, 1 H), 2.65 (dd, J = 12.3, 14.1 Hz, 1 H), 3.99 (dt, J = 10.8, 6.3 Hz, 1 H), 4.16 (m, 1 H), 4.20 (dt, J = 3.1, 10.3 Hz, 1 H). 13C NMR (125 MHz, CDCl3): δ = 14.1, 22.5, 25.6, 30.5, 34.8, 37.3, 40.2, 52.7, 55.8, 77.6, 174.0, 177.3. IR
(neat): 1768, 1681 cm-1. [α]D
25 -191.6 (c = 0.5, MeOH). {Lit. [α]D
25 -183.5 (c = 1.36, MeOH);
[4b]
[α]D
30 -219.3 (c = 0.5, MeOH);
[4d]
[α]D -181.6
(c = 0.89, MeOH)}.
[4e]
HRMS: m/z calcd for C12H17NO3Na+: 246.1100: found: 246.1099.