References
<A NAME="RU06804ST-1">1</A>
Yates FS. In
Comprehensive Heterocyclic Chemistry
Vol. 2:
Katritzky AR.
Rees CW.
Pergamon;
New York:
1984.
Chap. 2.09.
For reviews, see:
<A NAME="RU06804ST-2A">2a</A>
Silvester MJ.
Adv. Heterocycl. Chem.
1994,
1:
59
<A NAME="RU06804ST-2B">2b</A>
Silvester MJ.
Aldrichimica Acta
1991,
24:
31
<A NAME="RU06804ST-2C">2c</A>
Organofluorine Chemistry, Principles and Commercial Applications
Banks RE.
Smart BE.
Tatlow JC.
Plenum;
New York:
1994.
<A NAME="RU06804ST-3">3</A>
Hirano Y.
Uehara M.
Saeki K.
Kato T.
Takahashi K.
Mizutani T.
J. Health Sci.
2002,
48:
118 ; and references therein
<A NAME="RU06804ST-4">4</A>
Kato T.
Saeki K.
Kawazoe Y.
Hakura A.
Mutat. Res.
1999,
439:
149 ; and references therein
<A NAME="RU06804ST-5A">5a</A>
Mongin F.
Mojovic L.
Guillamet B.
Trécourt F.
Quéguiner G.
J. Org. Chem.
2002,
67:
8991
<A NAME="RU06804ST-5B">5b</A>
Arzel E.
Rocca P.
Marsais F.
Godard A.
Quéguiner G.
Tetrahedron
1999,
55:
12149
For the synthesis of fluoroquinolines, see:
<A NAME="RU06804ST-6A">6a</A>
Wada Y.
Mori T.
Ichikawa J.
Chem. Lett.
2003,
1000
<A NAME="RU06804ST-6B">6b</A>
Ichikawa J.
Wada Y.
Miyazaki H.
Mori T.
Kuroki H.
Org. Lett.
2003,
5:
1455
<A NAME="RU06804ST-6C">6c</A>
Chambers RD.
Parsons M.
Sandford G.
Skinner CJ.
Atherton MJ.
Moilliet JS.
J. Chem. Soc., Perkin Trans. 1
1999,
803 ; and references therein
<A NAME="RU06804ST-6D">6d</A>
Strekowski L.
Kiselyov AS.
Hojjat M.
J. Org. Chem.
1994,
59:
5886
<A NAME="RU06804ST-6E">6e</A>
Shi G.-Q.
Takagishi S.
Schlosser M.
Tetrahedron
1994,
50:
1129
For the synthesis of 2,4-disubstituted quinolines, see:
<A NAME="RU06804ST-7A">7a</A>
Wolf C.
Lerebours R.
J. Org. Chem.
2003,
68:
7077
<A NAME="RU06804ST-7B">7b</A>
Kobayashi K.
Yoneda K.
Mano M.
Morikawa O.
Konishi H.
Chem. Lett.
2003,
76
<A NAME="RU06804ST-7C">7c</A>
Huma HZS.
Halder R.
Kalra SS.
Das J.
Iqbal J.
Tetrahedron Lett.
2002,
43:
6485
See also for recent reports on the construction of quinoline framework:
<A NAME="RU06804ST-7D">7d</A>
Kim JN.
Chung YM.
Im YJ.
Tetrahedron Lett.
2002,
43:
6209
<A NAME="RU06804ST-7E">7e</A>
Cho CS.
Oh BH.
Kim JS.
Kim T.-J.
Shim SC.
Chem. Commun.
2000,
1885 ; and references therein
For the synthesis of quinolines from aryl isocyanides, see the following and references
cited therein:
<A NAME="RU06804ST-7F">7f</A>
Kobayashi K.
Yoneda K.
Mizumoto T.
Umakoshi H.
Morikawa O.
Konishi H.
Tetrahedron Lett.
2003,
44:
473
<A NAME="RU06804ST-7G">7g</A>
Curran DP.
Du W.
Org. Lett.
2002,
4:
3215
<A NAME="RU06804ST-7H">7h</A>
Suginome M.
Fukuda T.
Ito Y.
Org. Lett.
1999,
1:
1977
<A NAME="RU06804ST-8A">8a</A>
Smart BE. In Organofluorine Chemistry, Principles and Commercial Applications
Banks RE.
Smart BE.
Tatlow JC.
Plenum;
New York:
1994.
Chap. 3.
<A NAME="RU06804ST-8B">8b</A>
Lee VJ. In Comprehensive Organic Synthesis
Vol. 4:
Trost BM.
Fleming I.
Pergamon;
Oxford:
1991.
Chap. 1.2.
<A NAME="RU06804ST-9A">9a</A>
Gros P.
Fort Y.
Eur. J. Org. Chem.
2002,
3375 ; and references therein
<A NAME="RU06804ST-9B">9b</A>
Gros P.
Fort Y.
Caubère P.
J. Chem. Soc., Perkin Trans. 1
1997,
3597
<A NAME="RU06804ST-10">10</A>
McCombie SW. In Comprehensive Organic Synthesis
Vol. 8:
Trost BM.
Fleming I.
Pergamon;
Oxford:
1991.
Chap. 4.2.
Under free radical conditions with n-Bu3SnH or EtSH, this type of C-C bond formation is well known in the Fukuyama indole
synthesis. See:
<A NAME="RU06804ST-11A">11a</A>
Fukuyama T.
Chen X.
Peng G.
J. Am. Chem. Soc.
1994,
116:
3127
<A NAME="RU06804ST-11B">11b</A>
Tokuyama H.
Fukuyama T.
Chem. Rec.
2002,
2:
37
<A NAME="RU06804ST-12">12</A>
The redox potential of 1a was measured by cyclic voltam-metry. A reduction peak of 1a was observed at -2.79 V [1 mM in THF; supporting electrolyte: 0.1 M n-Bu4NClO4; working electrode: glassy carbon; counter electrode: platinum wire; reference electrode:
Ag/AgCl (E1/2 (ferrocene/ferricinium) = +0.26 V) at 25 °C; scan rate: 100 mVs-1].
<A NAME="RU06804ST-13">13</A> The cyclization similarly proceeded even in the dark. For electron transfer from
triorganostannyl anions, see:
Yammal CC.
Podesta JC.
Rossi RA.
J. Org. Chem.
1992,
57:
5720
For recent reports on biquinoline synthesis, see:
<A NAME="RU06804ST-14A">14a</A>
Uchida Y.
Echikawa N.
Oae S.
Heteroat. Chem.
1994,
5:
409
<A NAME="RU06804ST-14B">14b</A>
Fort Y.
Becker S.
Caubère P.
Tetrahedron
1994,
50:
11893
Biquinolines are widely used as bulky, chelating nitrogen ligands. See for example:
<A NAME="RU06804ST-15A">15a</A>
Bhattacharyya R.
Drago RS.
Abboud KA.
Inorg. Chem.
1997,
36:
2913
<A NAME="RU06804ST-15B">15b</A>
Gogoll A.
Gomes J.
Bergkvist M.
Grennberg H.
Organometallics
1995,
14:
1354
<A NAME="RU06804ST-15C">15c</A>
Kubow SA.
Marmion ME.
Takeuchi KJ.
Inorg. Chem.
1988,
27:
2761
See also for a chiral 2,2′-biquinoline N,N′-dioxide as an asymmetric catalyst:
<A NAME="RU06804ST-15D">15d</A>
Nakajima M.
Saito M.
Shiro M.
Hashimoto S.
J. Am. Chem. Soc.
1998,
120:
6419
<A NAME="RU06804ST-16">16</A>
4-Butyl-3-fluoroquinoline (
4a): To a solution of (n-Bu3Sn)2 (0.51 mL, 1.0 mmol) in THF (3 mL) was added n-BuLi (0.64 mL, 1.59 M in hexane, 1.0 mmol) over 15 min at 0 °C. To the resulting
solution was added 1a (75 mg, 0.34 mmol) in THF (3 mL) dropwise at -78 °C. The reaction mixture was stirred
at -78 °C for 1 h. The reaction was quenched with phosphate buffer (pH 7), and organic
materials were extracted with Et2O (10 mL × 3). The combined extracts were washed with brine and then dried over MgSO4. After removal of the solvent under reduced pressure, the residue was purified by
preparative TLC (hexane-EtOAc, 5:1) to give 4a (55 mg, 80%) as a pale yellow oil. 1H NMR (500 MHz, CDCl3): δ = 0.97 (3 H, t, J = 7.4 Hz), 1.46 (2 H, tq, J = 7.4, 7.4 Hz), 1.64-1.72 (2 H, m), 3.08 (2 H, td, J = 7.8 Hz, J
HF = 1.8 Hz), 7.59 (1 H, dd, J = 8.0, 8.0 Hz), 7.66 (1 H, ddd, J = 8.0, 8.0, 0.8 Hz), 7.98 (1 H, dd, J = 8.0, 0.8 Hz), 8.11 (1 H, dd, J = 8.0, 0.8 Hz), 8.74 (1 H, d, J
HF = 1.2 Hz). 13C NMR (125 MHz, CDCl3): δ = 13.8, 22.8, 23.9 (d, J
CF = 3 Hz), 31.8, 123.5 (d, J
CF = 6 Hz), 127.2, 127.9 (d, J
CF = 3 Hz), 128.0 (d, J
CF = 4 Hz), 130.3, 131.6 (d, J
CF = 12 Hz), 141.0 (d, J
CF = 29 Hz), 145.5 (d, J
CF = 2 Hz), 154.3 (d, J
CF = 251 Hz). 19F NMR (471 MHz, CDCl3/C6F6): δF = 28.6 (s). IR (neat): 2960, 2931, 1512, 1464, 1379, 1323, 1225, 1142, 760, 665 cm-1. HRMS: calcd for C13H14NF: 203.1110 (M+); found: 203.1128.
<A NAME="RU06804ST-17">17</A>
4,4′-Dibutyl-3,3′-difluoro-2,2′-biquinoline (5a): To a solution of (n-Bu3Sn)2 (0.44 mL, 0.86 mmol) in THF (3 mL) was added n-BuLi (0.54 mL, 1.60 M in hexane, 0.86 mmol) over 15 min at 0 °C. The resulting solution
(n-Bu3SnLi in THF) was added to a solution of 1a (76 mg, 0.35 mmol) in THF (3 mL) over 1 h at 0 °C. The reaction mixture was stirred
at r.t. for 1 h. The reaction was quenched with phosphate buffer (pH 7), and organic
materials were extracted with Et2O (10 mL × 3). The combined extracts were washed with brine and then dried over MgSO4. After removal of the solvent under reduced pressure, the residue was purified by
preparative TLC (hexane-EtOAc, 5:1) to give 5a (41 mg, 59%) as a pale yellow oil. 1H NMR (500 MHz, CDCl3): δ = 1.00 (6 H, t, J = 7.5 Hz), 1.51 (4 H, tq, J = 7.5, 7.5 Hz), 1.72-1.80 (4 H, m), 3.20 (4 H, t, J = 7.8 Hz), 7.66 (2 H, ddd, J = 8.0, 8.0, 1.2 Hz), 7.72 (2 H, ddd, J = 8.0, 8.0, 1.5 Hz), 8.06 (2 H, dd, J = 8.0, 8.0 Hz), 8.31 (2 H, dd, J = 8.0, 8.0 Hz). 13C NMR (125 MHz, CDCl3): δ = 13.8, 22.7, 24.1, 31.8, 123.3, 127.6, 128.2, 128.5, 130.9, 132.8 (dd, J
CF = 10, 3 Hz), 145.2 (dd, J
CF = 13, 4 Hz), 145.3, 152.9 (dd, J
CF = 256, 2 Hz). 19F NMR (471 MHz, CDCl3/C6F6): δF = 31.0 (s). IR (neat): 2958, 2929, 2872, 1504, 1456, 1377, 1338, 1221, 1188, 1144,
762 cm-1. HRMS: calcd for C26H26N2F2: 404.2064 (M+); found: 404.2057.
<A NAME="RU06804ST-18">18</A>
The corresponding 2-quinolyltin was not detected in the reaction mixture by 19F NMR. Over the course of the reaction, the corresponding ditin and tin hydride were
produced probably via the tin radical.
<A NAME="RU06804ST-19">19</A>
The formation of biquinoline 5 via the reaction of 3 and 1 was confirmed as follows: When quinolyl anion 3a (R =
n-Bu), generated by the addition of 1a to n-Bu3SnLi, was reacted with 0.8 equiv of 1b (R = Et), unsymmetrical 4-butyl-4′-ethyl-3,3′-difluoro-2,2′-biquinoline was obtained
in 59% yield (based on the consumed 1b).
<A NAME="RU06804ST-20">20</A>
Shimano M.
Meyers AI.
Tetrahedron Lett.
1994,
35:
7727