Plant Biol (Stuttg) 2005; 7(1): 49-57
DOI: 10.1055/s-2004-830477
Research Paper

Georg Thieme Verlag Stuttgart KG · New York

Changes in the Subcellular Distribution of Glutathione during Virus Infection in Cucurbita pepo (L.)

B. Zechmann1 , G. Zellnig1 , M. Müller1
  • 1Institute of Plant Sciences, University of Graz, Schubertstraße 51, 8010 Graz, Austria
Further Information

Publication History

Received: October 20, 2004

Accepted: October 25, 2004

Publication Date:
21 January 2005 (online)

Abstract

Changes in the subcellular distribution and quantification of glutathione were studied with electron microscopic immunogold cytochemistry in Zucchini yellow mosaic virus (ZYMV)-infected Styrian pumpkin plants (Cucurbita pepo L. ssp. pepo var. styriaca Greb.) two weeks after inoculation. The amount of gold particles bound to glutathione was statistically evaluated for different cell structures, including mitochondria, plastids, nuclei, peroxisomes, and cytosol. In general, ZYMV-infected plants showed higher gold labelling density in intact mesophyll cells of the 5th (older leaves) and the youngest fully developed leaves (younger leaves), and decreased levels of glutathione within root tip cells when compared to the control. In general, within older and younger leaves the highest amount of gold particles was found in mitochondria and the lowest amount in plastids. In ZYMV-infected older leaves, an increase in glutathione was found in peroxisomes (1.7-fold), the cytosol (1.6-fold), mitochondria (1.4-fold), and nuclei (1.2-fold), whereas glutathione levels in plastids did not differ significantly when compared to control cells. In ZYMV-infected younger leaves elevated glutathione contents were found in the cytosol (3-fold), nuclei (2.1-fold), peroxisomes (1.8-fold), and plastids (1.5-fold), whereas mitochondria showed an insignificant decrease in glutathione levels in comparison to the control. In root tip cells of ZYMV-infected plants the amount of gold particles bound to glutathione was decreased in all investigated cell structures by between 0.7- to 0.8-fold. Additionally, total glutathione contents were determined in older and younger leaves using high-performance liquid chromatography (HPLC), which revealed no significant differences between control and ZYMV-infected leaves. The relevance of the results of both methods were compared and are discussed.

References

  • 1 Alscher R. G., Donahue J. L., Cramer C. L.. Reactive oxygen species and antioxidants: Relationships in green cells.  Physiologia Plantarum. (1997);  100 224-233
  • 2 Baker C. J., Orlandi E. W.. Active oxygen in plant pathogenesis.  Annual Review of Phytopathology. (1995);  33 299-321
  • 3 Bellomo G., Palladini G., Vairetti M.. Intranuclear distribution, function and fate of glutathione and glutathione-S-conjugate in living rat hepatocytes studies by fluorescence microscopy.  Microscopy Research and Technique. (1997);  36 243-252
  • 4 Bortz J., Lienert G. A., Boehnke K.. Verteilungsfreie Methoden in der Biostatistik. Berlin, Heidelberg, New York, Tokyo; Springer Verlag (1990)
  • 5 del Río L. A., Palma J. M., Sandalio L. M., Corpas F. J., Pastori G. M., Bueno P., López-Huertas E.. Peroxisomes as a source of superoxide and hydrogen peroxide in stressed plants.  Biochemical Society Transactions. (1996);  24 434-438
  • 6 del Río L. A., Corpas F. J., Sandalio L. M., Palma J. M., Gómez M., Barroso J. B.. Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes.  Journal of Experimental Botany. (2002);  53 1255-1272
  • 7 El-Zahaby H. M., Gullner G., Király Z.. Effects of powdery mildew infection of barley on the ascorbate-glutathione cycle and other antioxidants in different host-pathogen interactions.  Phytopathology. (1995);  85 1225-1230
  • 8 Fernandez-Checa J. C., Kaplowitz N., Garcia-Ruiz C., Colell A., Miranda M., Mari M., Ardite E., Morales A.. GSH transport in mitochondria: defense against TNF-induced oxidative stress and alcohol-induced defect.  American Journal of Physiology. (1997);  273 G7-G17
  • 9 Fodor J., Gullner G., Ádám A. L., Barna B., Kömives T., Király Z.. Local and systemic responses of antioxidants to tobacco mosaic virus infection and to salicylic acid in tobacco. Role in systemic acquired resistance.  Plant Physiology. (1997);  114 1443-1451
  • 10 Foyer C. H., Rennenberg H.. Regulation of glutathione synthesis and its role in abiotic and biotic stress defence. Brunold, C., Rennenberg, H., De Kok, L. J., Stulen, I., and Davidian, J. C., eds. Sulfur Nutrition and Sulfur Assimilation in Higher Plants. Bern; Paul Haupt Verlag (2000): 127-153
  • 11 Foyer C. H., Theodoulou F. L., Delrot S.. The functions of inter- and intracellular glutathione transport systems in plants.  Trends in Plant Science. (2001);  6 486-492
  • 12 Goldbach R., Bucher E., Prins M.. Resistance mechanisms to plant viruses: an overview.  Virus Research. (2003);  92 207-212
  • 13 Gullner G., Tóbiás I., Fodor J., Kömives T.. Elevation of glutathione level and activation of glutathione-related enzymes affect virus infection in tobacco.  Free Radical Research. (1999);  31 155-161
  • 14 Gullner G., Kömives T.. The role of glutathione and glutathione-related enzymes in plant-pathogen interaction. Grill, D., Tausz, M., and De Kok, L. J., eds. Significance of Glutathione to Plant Adaptation to the Environment. Dordrecht, Boston, London; Kluwer Academic Publishers (2001): 207-239
  • 15 Hartmann T. N., Fricker M. D., Rennenberg H., Meyer A. J.. Cell-specific measurements of cytosolic glutathione in poplar leaves.  Plant, Cell and Environment. (2003);  26 965-975
  • 16 Herschbach C., Rennenberg H.. Significance of phloem-translocated organic sulfur compounds for the regulation of sulfur nutrition.  Progress in Botany. (2001);  62 177-193
  • 17 Jiménez A., Hernández J. A., del Río L. A., Sevilla F.. Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves.  Plant Physiology. (1997);  114 275-284
  • 37 Kranner I., Grill D.. Content of low-molecular-weight thiols during the imbibition of pea seeds.  Physiologia Plantarum. (1993);  88 557-562
  • 18 Lamb C., Dixon R. A.. The oxidative burst in plant disease resistance.  Annual Review of Plant Physiology and Plant Molecular Biology. (1997);  48 251-275
  • 19 Marrs K.. The functions and regulation of glutathione S-transferases in plants.  Annual Review of Plant Physiology and Plant Molecular Biology. (1996);  47 127-158
  • 20 Mittova V., Volokita M., Guy M., Tal M.. Activities of SOD and the ascorbate-glutathione cycle enzymes in subcellular compartments in leaves and roots of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii. .  Physiologia Plantarum. (2000);  110 42-51
  • 21 Müller M., Zechmann B., Tausz M., Brendle K., Zellnig G.. Effects of exogenous glutathione on suspension callus cells of spruce (Picea abies [L.] Karst.).  Acta Botanica Croatica. (2001);  60 197-209
  • 22 Müller M., De Kok L. J., Weidner W., Tausz M.. Differential effects of H2S on cytoplasmic and nuclear thiol concentrations in different tissues of Brassica roots.  Plant Physiology and Biochemistry. (2002);  40 585-589
  • 23 Müller M., Zechmann B., Tausz M., Zellnig G.. Subcellular distribution of glutathione - a high resolution immunogold analysis in leaves of pumpkin (Cucurbita pepo L.). Davidian, J. C., Grill, D., De Kok, L. J., Stulen, I., Hawkesford, M. J., Schnug, E., and Rennenberg, H., eds. Sulfur Transport and Assimilation in Plants. Leiden, The Netherlands; Backhuys Publishers (2003): 295-297
  • 24 Müller M., Zechmann B., Zellnig G.. Ultrastructural localization of glutathione in Cucurbita pepo plants.  Protoplasma. (2004);  223 213-219
  • 25 Noctor G., Arisi A. C. M., Jouanin L., Kunert K. J., Rennenberg H., Foyer C. H.. Glutathione: biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants.  Journal of Experimental Botany. (1998);  49 623-647
  • 26 Noctor G., Foyer C. H.. Ascorbate and glutathione: keeping active oxygen under control.  Annual Review of Plant Physiology and Plant Molecular Biology. (1998);  49 229-279
  • 27 Noctor G., Gomez L., Vanacker H., Foyer C. H.. Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signaling.  Journal of Experimental Botany. (2002);  53 1283-1304
  • 28 Rennenberg H.. Glutathione - an ancient metabolite with modern tasks. Grill, D., Tausz, M., and De Kok, L. J., eds. Significance of Glutathione to Plant Adaptation to the Environment. Dordrecht, Boston, London; Kluwer Academic Publishers (2001): 1-11
  • 29 Riedle-Bauer M.. Role of reactive oxygen species and antioxidant enzymes in systemic virus infections of plants.  Journal of Phytopathology. (2000);  148 297-302
  • 30 Tausz M.. The role of glutathione in plant response and adaptation to natural stress. Grill, D., Tausz, M., and De Kok, L. J., eds. Significance of Glutathione to Plant Adaptation to the Environment. Dordrecht, Boston, London; Kluwer Academic Publishers (2001): 101-123
  • 31 Vanacker H., Carver T. L. W., Foyer C. H.. Pathogen-induced changes in the antioxidant status of the apoplast in barley leaves.  Plant Physiology. (1998 a);  117 1103-1114
  • 32 Vanacker H., Foyer C. H., Carver T. L. W.. Changes in apoplastic antioxidants induced by powdery mildew attack in oat genotypes with race non-specific resistance.  Planta. (1998 b);  208 444-452
  • 33 Vanacker H., Harbinson J., Ruisch J., Carver T. L. W., Foyer C. H.. Antioxidant defences of the apoplast.  Protoplasma. (1998 c);  205 129-140
  • 34 Vanacker H., Carver T. L. W., Foyer C. H.. Early H2O2 accumulation in mesophyll cells leads to induction of glutathione during the hypersensitive response in the barley-powdery mildew interaction.  Plant Physiology. (2000);  123 1289-1300
  • 35 Wonisch W., Schaur R. J.. Chemistry of glutathione. Grill, D., Tausz, M., and De Kok, L. J., eds. Significance of Glutathione to Plant Adaptation to the Environment. Dordrecht, Boston, London; Kluwer Academic Publishers (2001): 13-26
  • 36 Zechmann B., Müller M., Zellnig G.. Cytological modifications in zucchini yellow mosaic virus (ZYMV)-infected Styrian pumpkin plants.  Archives of Virology. (2003);  148 1119-1133

B. Zechmann

Institute of Plant Sciences
University of Graz

Schubertstraße 51

8010 Graz

Austria

Email: bernd.zechmann@uni-graz.at

Editor: H. Rennenberg

    >