Zusammenfassung
Die sonographischen hämodynamischen und strukturellen Befunde bei Karotisdissektionen
sind in einer Reihe von Studien beschrieben worden, ihre Assoziation mit der Häufigkeit
und Topografie zerebraler Infarkte wurde bisher jedoch kaum untersucht. Wir haben
daher die Relevanz der Befunde der extrakraniellen Doppler- und Duplex-Sonographie
in Hinblick auf die mögliche Pathogenese des Hirninfarktes bei Karotisdissektionen
analysiert. 87 Patienten (44 w, 43 m; Alter 16 - 68 Jahre) wurden mit 92 Dissektionen
konsekutiv in die Studie aufgenommen, neurologisch und mit extrakranieller Doppler-Sonographie
und Farbduplex-Sonographie untersucht. Die Diagnosesicherung erfolgte durch weitere
Methoden (intraarterielle und MR-Angiographie, axiale zervikale Magnetresonanztomographie
[MRT]). Assoziierte Hirninfarkte wurden durch zerebrale Computertomographie bzw. MRT
diagnostiziert. 53 % der Patienten erlitten einen Infarkt ipsilateral zur Dissektion,
hiervon 13 (27 %) einen kompletten Mediainfarkt, 23 (47 %) einen territorialen Teilinfarkt
und 6 (12 %) einen lentikulostriatären Infarkt. In nur 7 Fällen (14 %) kam ein kortikaler
oder subkortikaler Grenzzoneninfarkt zur Darstellung. Doppler-sonographisch fanden
sich hämodynamisch pathologische Befunde in 96 % der Dissektionen, am häufigsten war
das bidirektionale Widerstandssignal (60 %). Dieses Dopplersignal war zudem signifikant
(64 %, p < 0,05) mit einem zerebralen Infarkt assoziiert. Alle vier Patienten mit
doppler-sonographischem Normalbefund hatten keinen Hirninfarkt. Die Duplex-Sonographie
hatte ohne hämodynamische Information eine geringe Sensitivität für die Karotisdissektion,
so ergaben sich in 50 % strukturelle Normalbefunde, jedoch erlitten 54 % dieser Patienten
einen Hirninfarkt. Diese Studie zeigt, dass Karotisdissektionen mit hämodynamisch
relevanter Obstruktion häufiger mit Hirninfarkten assoziiert sind, deren Pathogenese
dennoch vorwiegend embolisch ist.
Abstract
Hemodynamic and structural sonographic pathology of internal carotid artery (ICA)
dissection has been reported in a number of studies. However, the association of sonographic
findings with the frequency and topography of cerebral infarcts has scarcely been
studied to date. Therefore, we attempted to determine the significance of Doppler
and duplex abnormalities in ICA dissection for the presumed pathogenesis of associated
stroke. 87 patients (44 w, 43 m, range 16 - 68 years) with 92 ICA dissections were
consecutively included in the study. All patients had a neurological examination and
extracranial Doppler studies, color coded duplex sonography was performed in 74 dissections.
Diagnosis was confirmed by additional methods (intraarterial und MR-angiography, axial
cervical MRI). All patients had cranial CT or MRI to assess the acute stroke lesion.
Ipsilateral stroke occurred in 53 % of the ICA dissections. Of these, 27 % had complete
middle cerebral artery (MCA) infarcts, 47 % had territorial and 12 % lenticulostriate
infarcts. In only 7 cases (14 %) subcortical/cortical borderzone infarcts were found.
Doppler sonography provided abnormal hemodynamic findings in 96 % of the dissections.
Most frequently, a high resistance Doppler signal with bidirectional flow components
was found (60 %). This Doppler signal was significantly associated with cerebral infarcts
(64 %; p < 0.05), whereas the four patients with normal Doppler did not suffer a stroke.
Duplex sonography without hemodynamic Doppler information had a low sensitivity for
carotid dissection, because 50 % of the studies were normal, however, 54 % of these
patients suffered a stroke. This study demonstrates, that ICA dissections with significant
hemodynamic obstruction are more frequently associated with cerebral infarcts while
their pathogenesis is predominantly embolic.
Literatur
1
Guillon B, Lévy C, Bousser M-G.
Internal carotid artery dissection: an update.
Journal of Neurological Science.
1998;
153
146-158
2
Schievink W.
Spontaneous dissection of the carotid and vertebral arteries.
New England Journal of Medicine.
2001;
344
898-906
3
Brandt T.
Cervical artery dissection: update an new results of research of the pathogenesis.
Cerebrovascular diseases.
2000;
10, Suppl 4
5-8
4
Steinke W, Rautenberg W, Schwartz A, Hennerici M.
Noninvasive monitoring of internal carotid artery dissection.
Stroke.
1994;
25
998-1005
5
Sturzenegger M, Mattle H, Rivoir A. et al .
Ultrasound findings in carotid artery dissection.
Neurology.
1995;
45
691-698
6
Bray J-M de, Lhoste P, Dubas F. et al .
Ultrasonic features of extracranial carotid dissections.
Ultrasound Med.
1994;
13
659-664
7
Lucas C, Moulin T, Deplanque D. et al .
Stroke patterns of internal carotid artery dissection in 40 patients.
Stroke.
1998;
29
2646-2448
8
Steinke W, Schwartz A, Hennerici M.
Topography of cerebral infarction associated with carotid artery dissection.
Journal of Neurology.
1996;
243
323-328
9
Weiller C, Müllges W, Ringelstein E B. et al .
Patterns of brain infarction in internal carotid artery dissections.
Neurosurg Rev.
1991;
14
111-113
10
Benninger D H, Georgiadis D, Kremer C. et al .
Mechanism of ischemic infarct in spontaneous carotid dissection.
Stroke.
2004;
35
482-485
11
Weiller C, Ringelstein E B, Reiche W, Buell U.
Clinical an hemodynic aspects of low-flow infarcts.
Stroke.
1991;
22
1117-1123
12
Bogousslavsky J.
Topographic patterns of cerebral infarcts.
Cerebrovascular diseases.
1992;
1, Suppl 1
61-68
13
Bogousslavsky J, Melle G Van, Regli F.
Middle cerebral artery pial territory infarcts: a study of the Lausanne Stroke Registry.
Ann Neurol.
1989;
25
555-560
14
Ringelstein E B, Zeumer H, Angelou D.
The pathogenesis of strokes from internal carotid artery occlusion. Diagnostic and
therapeutical implications.
Stroke.
1983;
14
867-875
15
Srinivasan J, Newell D W, Sturzenegger M. et al .
Transcranial doppler in the evaluation of internal carotid artery dissection.
Stroke.
1996;
27
1226-1230
16
Droste D, Junker K, Stögbauer F. et al .
Clinically silent circulating microemboli in 20 patients with carotid or vertebral
artery dissection.
Cerebrovascular diseases.
2001;
12
181-185
17
Oliveira V, Batista P, Soares F, Ferro J M.
HITS in internal carotid dissections.
Cerebrovascular diseases.
2001;
11
330-334
18
Milhaud D, Freitas G R de, Melle G van, Bogousslavsky J.
Occlusion due to carotid artery dissection: a more severe disease than previously
suggested.
Arch Neurol.
2002;
59
557-561
19
Kremer C, Mosso M, Georgiadis D. et al .
Carotid dissection with permanent and transient occlusion or severe stenosis: long-term
outcome.
Neurology.
2003;
60
271-275
20 Saver J L, Easton J D.
Dissections and trauma of cervicocerebral arteries. In: Barnett HJM, Mohr JP, Stein BM, Yatsu FM (eds) Stroke, Third edition. New York,
Edinburgh, London, Philadelphia, San Francisco; Churchill Livingstone 1998: 769-786
21
Schievink W.
The treatment of spontaneous carotid an vertebral artery dissections.
Curr Opin Cardiol.
2000;
15
316-321
22
Bounds J A.
Carotid dissection: pathophysiology of stroke an treatment implications.
Stroke.
1999;
30
1149-1150
23
Beletsky V, Nadareishvili Z, Lynch J. et al .
Cervical arterial dissection.
Stroke.
2003;
34
2856-2860
Dr. med. Hans-Bernd Hülsbömer
Klinik für Neurologie · Marienhospital Düsseldorf
Rochusstraße 2
40479 Düsseldorf
Email: hb.huelsboemer@marien-hospital.de