Synlett 2004(15): 2836-2837  
DOI: 10.1055/s-2004-835662
SPOTLIGHT
© Georg Thieme Verlag Stuttgart · New York

Dimethyl 1,2,4,5-Tetrazine-3,6-dicarboxylate

Sébastien Naud*
Laboratoire de Synthèse Organique (UMR-CNRS 6513; FR-CNRS 2465), Université de Nantes, UFR des Sciences et des Techniques , 2 rue de la Houssinière, B.P. 92208, 44322 Nantes cedex 3, France
e-Mail: sebastien.naud@chimie.univ-nantes.fr;
Further Information

Publication History

Publication Date:
25 November 2004 (online)

Introduction

Aza heterocyclic compounds, due to their presence in a number of biologically active compounds such as ­alkaloids, are very important in the field of medicinal and therapeutic chemistry. They can be synthesized through various ways, the hetero Diels-Alder reaction being one of them. [1] [2] For example, dimethyl 1,2,4,5-tetrazine-3,6-dicarboxylate (1) has been extensively used for the ­synthesis of nitrogen-containing heterocyclic compounds through inverse electron demand hetero Diels-Alder ­reactions. [3] Herein, I would like to discuss this reagent.

Dimethyl 1,2,4,5-tetrazine-3,6-dicarboxylate (1) is a bright-red crystalline solid and can be synthesized on large scale through four steps from ethyl diazoacetate (2) (Scheme 1). [4] [5]

Its synthesis starts with a base-promoted dimerization of ethyl diazoacetate (2) followed by acidification of the ­sodium salt (3) with concentrated hydrochloric acid and esterification to afford the diester (5). Finally, oxidation with nitrous gas affords 1 in 34% overall yield.

Scheme 1

    References

  • 1 Gilchrist TL. Heterocyclic Chemistry   Pitman Publishing; London: 1985. 
  • 2 Sundberg RG. Comprehensive Heterocyclic Chemistry   Vol. IV:  Pergamon Press; Oxford: 1984. 
  • 3 Boger DL. Chem. Rev.  1986,  86:  781-793  
  • 4 Boger DL. Panek JS. Patel M. Org. Synth.  1992,  70:  79-92  
  • 5 Boger DL. Coleman RS. Panek JS. Huber FX. Sauer J. J. Org. Chem.  1985,  50:  5377-5379  
  • 6 Joshi U. Pipelier M. Naud S. Dubreuil D. Curr. Org. Chem.  2004,  in press 
  • 7 Bach NJ. Kornfeld EC. Jones ND. Chaney M. Dorman DE. Paschal JW. Clemens JA. Smalstig EB. J. Med. Chem.  1980,  23:  481-491  
  • 8 Boger DL. Hong J. J. Am. Chem. Soc.  2001,  123:  8515-8519  
  • 9 Boger DL. Soenen DR. Boyce CW. Hedrick MP. Jin Q. J. Org. Chem.  2000,  65:  2479-2483  
  • 10 Boger DL. Boyce CW. Labroli MA. Sehon CA. Jin Q. J. Am. Chem. Soc.  1999,  121:  54-62  
  • 11 Boger DL. Baldino CM. J. Am. Chem. Soc.  1993,  115:  11418-11425  
  • 12 Boger DL. Patel M. J. Org. Chem.  1988,  53:  1405-1415  
  • 13 Boger DL. Coleman RS. J. Am. Chem. Soc.  1987,  109:  2717-2727  
  • 14 Boger DL. Coleman RS. J. Org. Chem.  1986,  51:  3250-3252  
  • 15 Boger D. L., Coleman R. S., Panek J. S., Yohannes D.; J. Org. Chem.; 1984, 49: 4405-4409
  • 16 Joshi U. Josse S. Pipelier M. Chevallier F. Pradère J.-P. Hazard R. Legoupy S. Huet F. Dubreuil D. Tetrahedron Lett.  2004,  45:  1031-1033  
  • 17 Manh GT. Hazard R. Pradère JP. Tallec A. Raoult E. Dubreuil D. Tetrahedron Lett.  2000,  41:  647-650  
  • 18 Manh GT. Hazard R. Tallec A. Pradère JP. Dubreuil D. Thiam M. Toupet L. Electrochim. Acta  2002,  47:  2833-2841  
  • 19 Boger DL. Panek JS. Duff SR. J. Am. Chem. Soc.  1985,  107:  5745-5754  
  • 20 Kotschy A. Smith DM. Benyei AC. Tetrahedron Lett.  1998,  39:  1045-1048  
  • 21 Benson SC. Palabrica CA. Snyder JK. J. Org. Chem.  1987,  52:  4610-4614  
  • 22 Kämpchen T. Massa W. Overheu W. Schmidt R. Seitz G. Chem. Ber.  1982,  115:  683-694  
  • 23 Imming P. Mohr R. Müller E. Overheu W. Seitz G. Angew. Chem., Int. Ed. Engl.  1982,  21:  284