References
<A NAME="RG37904ST-1">1</A>
Lewis JR.
Nat. Prod. Rep.
1994,
11:
395
<A NAME="RG37904ST-2">2</A>
Lewis JR.
Nat. Prod. Rep.
1995,
12:
135
<A NAME="RG37904ST-3">3</A>
Lewis JR.
Nat. Prod. Rep.
1996,
13:
435
<A NAME="RG37904ST-4">4</A>
Roy RS.
Gehring AM.
Milne JC.
Belshaw PJ.
Walsh CT.
Nat. Prod. Rep.
1999,
16:
249
<A NAME="RG37904ST-5">5</A>
Ogino J.
Moore RE.
Patterson GML.
Smith CD.
J. Nat. Prod.
1996,
59:
581
<A NAME="RG37904ST-6">6</A>
Backhaus D.
Tetrahedron Lett.
2000,
41:
2087
<A NAME="RG37904ST-7">7</A>
Moody ChJ.
Swann E.
J. Med. Chem.
1995,
38:
1039
<A NAME="RG37904ST-8">8</A>
Aguillar E.
Meyers AI.
Tetrahedron Lett.
1994,
35:
2473
<A NAME="RG37904ST-9">9</A>
Faulkner DJ.
Nat. Prod. Rep.
1999,
16:
155
<A NAME="RG37904ST-10">10</A>
Crews P.
Kakou Y.
Quiñoà E.
J. Am. Chem. Soc.
1988,
110:
4365
<A NAME="RG37904ST-11">11</A>
Somogyi L.
Haberhauer G.
Rebek J.
Tetrahedron
2001,
57:
1699
<A NAME="RG37904ST-12">12</A>
Haberhauer G.
Rominger F.
Eur. J. Org. Chem.
2003,
3209
<A NAME="RG37904ST-13">13</A>
Wipf P.
Chem. Rev.
1995,
95:
2115
<A NAME="RG37904ST-14">14</A>
Hamamoto Y.
Endo M.
Nakagawa M.
Nakahanishi T.
Mizukawa K.
J. Chem. Soc., Chem. Commun.
1983,
323
<A NAME="RG37904ST-15">15</A>
Ciufolini MA.
Shen YC.
J. Org. Chem.
1997,
62:
3804
<A NAME="RG37904ST-16">16</A>
Tavecchia P.
Gentili P.
Kurz M.
Sttani C.
Bonfichi R.
Selva E.
Lociuro S.
Restelli E.
Ciabatti R.
Tetrahedron
1995,
51:
4867
<A NAME="RG37904ST-17">17</A>
Suzuki T.
Nagasaki A.
Okumura K.
Shin C.
Heterocycles
2001,
55:
835
<A NAME="RG37904ST-18">18</A>
Nagasaki A.
Adachi Y.
Yonezawa Y.
Shin C.
Heterocycles
2002,
60:
321
<A NAME="RG37904ST-19">19</A>
Clough J.
Chen S.
Gordon EM.
Hackbarth C.
Lam S.
Trias J.
White RJ.
Candiani G.
Donadio S.
Romano G.
Ciabatti R.
Jacobs J.
Bioorg. Med. Chem. Lett.
2003,
13:
3409
<A NAME="RG37904ST-20">20</A>
Martin LM.
Hu BH.
Tetrahedron Lett.
1999,
40:
7951
<A NAME="RG37904ST-21">21</A>
Kolb J.
Beck B.
Dömling A.
Tetrahedron Lett.
2002,
43:
6897
<A NAME="RG37904ST-22">22</A>
Henkel B.
Sax M.
Dömling A.
Tetrahedron Lett.
2003,
44:
3679
<A NAME="RG37904ST-23">23</A>
Henkel B.
Sax M.
Dömling A.
Tetrahedron Lett.
2003,
44:
7015
<A NAME="RG37904ST-24">24</A>
Henkel B.
Sax M.
Dömling A.
Synlett
2003,
2410
<A NAME="RG37904ST-25">25</A>
Henkel B.
Beck B.
Westner B.
Mejat B.
Dömling A.
Tetrahedron Lett.
2003,
44:
8947
<A NAME="RG37904ST-26">26</A>
Kolb J.
Beck B.
Almstetter M.
Heck S.
Herdtweck E.
Dömling A.
Molec. Diversity
2003,
6:
297
<A NAME="RG37904ST-27">27</A>
Heck S.
Dömling A.
Synlett
2000,
424
<A NAME="RG37904ST-28">28</A>
Schöllkopf U.
Porsch H.
Lau HH.
Liebigs Ann. Chem.
1979,
9:
1444
<A NAME="RG37904ST-29">29</A>
Yamada M.
Fukui T.
Nunami K.
Tetrahedron Lett.
1995,
36:
257
<A NAME="RG37904ST-30">30</A>
Nunami K.
Yamada M.
Fukui T.
Matsumoto K.
J. Org. Chem.
1994,
59:
7635
<A NAME="RG37904ST-31">31</A>
Schöllkopf U.
Gerhart F.
Schröder R.
Hoppe D.
Liebigs Ann. Chem.
1972,
766:
116
<A NAME="RG37904ST-32">32</A>
Kolb J.
Doctoral Thesis
Technical University;
Munich:
2001.
<A NAME="RG37904ST-33">33</A>
Typical Procedure:
Aldehyde or ketone (1 mmol), amine and MgSO4 are stirred under inert and water-free conditions in 2 mL dry MeOH at 0 °C. The imine
is precondensed for 2 h and the solution is cooled to -10 °C: 1 mmol of the thiocarboxylic
acid and isocyanide are added and the reaction volume is increased to 4 mL. The reaction
mixture is allowed to warm up to r.t. and stirred for 24 h until the reaction is completed
(indication by TLC). Then the reaction mixture is diluted with 25 mL CH2Cl2. The organic layer is washed with sat. NaHCO3 solution, 3% HCl and sat. NaCl solution, dried over MgSO4 and concentrated in vacuo. The resulting oil is purified by column chromatography
on silica gel (hexane-EtOAc).
<A NAME="RG37904ST-34">34</A>
Compound 7b was isolated in 43% yield as a yellow oil. HPLC-MS spectra (Varian 1200); RP OmniSpher
C18 column, 3 mm × 150 mm, 5 µm; ProStar 320 (254 nm); 0.3 mL/min, 10 min, MeCN-H2O = 70:30 coupled with a Quadrupol MS/MS mass spectrometer using electrospray ionisation
(ESI): tR(254nm) = 5.37 min; m/z = 361.1 [M + H]+, 383.1 [M + Na]+. 1H NMR (270.17 MHz, CDCl3): δ = 1.30 [d, 6 H, J = 7.01 Hz, CH(CH3)2], 1.61 (d, 3 H, J = 7.01 Hz, H3C-CH), 2.12 (s, 3 H, H3C-CO), 3.91 (s, 3 H, CH3OOC), 4.07 [h, 1 H, J = 7.01 Hz, CH(CH3)2], 4.57 (s, 1 H, CH2-C6H5), 4.60 (s, 1 H, CH2-C6H5), 6.18 (q, 1 H, J = 7.01 Hz, CH-CH3), 7.14-7.31 (m, 5 H, C6H5). 13C NMR (100.53 MHz, CDCl3): δ = 17.13 (H3C-CH), 22.26 (H3C-CO), 24.96 [(CH(CH3)2], 24.99 [CH(CH3)2], 27.89 [CH(CH3)2], 48.85 (CH2-C6H5), 51.56 (CH-CH3), 51.94 (CH3OOC-), 125.79, 127.17, 128.58, 137.30 (Cq), 138.60 (Cq), 159.71 (Cq), 162.71 (Cq),
166.35 (CON), 171.85 (COOMe).
Compound 7d was isolated in 41% yield as a yellow oil. HPLC-MS spectra (Varian 1200); RP OmniSpher
C18 column, 3 mm × 150 mm, 5 µm; ProStar 320 (254 nm); 0.3 mL/min, 10 min, MeCN-H2O = 80:20 coupled with a Quadrupol MS/MS mass spectrometer using electrospray ionisation
(ESI): t
R (254 nm) = 5.08 min; m/z = 395.4 [M + H]+, 417.2 [M + Na]+. 1H NMR (399.78 MHz, CDCl3): δ = 1.66 (d, 3 H, J = 7.26 Hz, H3C-CH), 2.13 (s, 3 H, H3C-CO), 3.79 (s, 3 H, CH3O-), 4.67 (s, 2 H, CH2-C6H5), 6.04 (q, 1 H, J = 7.26 Hz, CH-CH3), 7.19-7.41 (m, 10 H, C6H5). 13C NMR (100.53 MHz, CDCl3): δ = 17.23 (H3C-CH), 22.34 (H3C-CO), 49.19 (CH2-C6H5), 51.85 (CH-CH3), 52.07 (CH3OOC-), 125.94, 127.31, 128.11, 128.70, 129.09, 129.73, 130.27, 137.34 (Cq), 139.27
(Cq), 147.29 (Cq), 162.53 (Cq), 168.86 (CON), 171.83 (COOMe).