Abstract
In continuous light, the Crassulacean acid metabolism plant Kalanchoë daigremontiana Hamet et Perrier has a circadian rhythm of gas exchange with peaks occurring during
the subjective night. The rhythm of gas exchange is coupled to a weak, reverse phased
rhythm of quantum yield of photosystem II (ΦPSII). To test if the rhythm of ΦPSII persists in the absence of stomatal control, leaves were coated with a thin layer
of translucent silicone grease which prevented CO2 and H2O exchange. In spite of this treatment, the rhythm of ΦPSII occurred with close to normal phase timing and with a much larger amplitude than
in uncoated leaves. The mechanism underlying the ΦPSII rhythm in coated leaves can be explained by a circadian activity of phosphoenolpyruvate
carboxylase (PEPC). At peaks of PEPC activity, the small amount of CO2 contained in the coated leaf could have become depleted, preventing the carboxylase
activity of Rubisco and causing decreases in electron transport rates (observed as
deep troughs of ΦPSII at 23-h in LL and at ca. 24-h intervals afterwards). Peaks of ΦPSII would be caused by a downregulation of PEPC leading to improved supply of CO2 to Rubisco. Substrate limitation of photochemistry at 23 h (trough of ΦPSII) was also suggested by the weak response of ETR in coated leaves to stepwise light
enhancement. These results show that photosynthetic rhythmicity in K. daigremontiana is independent of stomatal regulation and may originate in the mesophyll.
Key words
Crassulacean acid metabolism - circadian rhythms -
Kalanchoë.
References
- 1
Bohn A., Hinderlich S., Hütt M. T., Kaiser F., Lüttge U..
Identification of rhythmic subsystems in the circadian cycle of Crassulacean acid
metabolism under thermoperiodic perturbations.
Biological Chemistry.
(2003);
384
721-728
- 2
Booji-James I. S., Swegle M. W., Edelman M., Mattoo A. K..
Phosphorylation of the D1 photosystem II reaction center protein is controlled by
an endogenous circadian rhythm.
Plant Physiology.
(2002);
130
2069-2075
- 3
Buchannan-Bollig I. C., Smith J. A. C..
Circadian rhythms in crassulacean acid metabolism: phase relationships between gas
exchange, leaf water relations and malate metabolism in Kalanchoë daigremontiana.
.
Planta.
(1984);
161
264-271
- 4
Duarte H. M., Jakovljevic I., Kaiser F., Lüttge U..
Lateral diffusion of CO2 in leaves of the crassulacean acid metabolism plant Kalanchoë daigremontiana Hamet et Perrier.
Planta.
(2004);
in press
- 5 Edwards G. E., Dai Z., Cheng S. H., Ku M. S. B..
Factors affecting the induction of Crassulacean acid metabolism in Mesembryanthemum crystallinum.
. Winter, K. and Smith, J. A. C., eds. Crassulacean Acid Metabolism. Berlin, Heidelberg;
Springer Verlag (1996): 119-134
- 6
Genty B., Briantais J. M., Baker N. M..
The relationship between the quantum yield of photosynthetic electron transport and
quenching of chlorophyll fluorescence.
Biochimica et Biophysica Acta.
(1989);
990
320-324
- 7
Gorton H. L., Williams W. E., Binns M. E., Gemmel C. N., Leheny E. A., Shepherd A. C..
Circadian stomatal rhythms in epidermal peels from Vicia faba.
.
Plant Physiology.
(1989);
90
1329-1334
- 8
Hennesey T. L., Field C. B..
Circadian rhythms in photosynthesis. Oscillations in carbon assimilation and stomatal
conductance under constant conditions.
Plant Physiology.
(1991);
96
831-836
- 9
Hütt Th., Lüttge U..
Nonlinear dynamics as a tool for modeling in plant physiology.
Plant Biology.
(2002);
4
281-297
- 10
Kluge M., Fischer K..
Über Zusammenhänge zwischen dem CO2-Austauch und der Abgabe von Wasserdampf durch Bryophyllum daigremontianum Berg.
Planta.
(1967);
77
212-223
- 11
Kondo A., Kaikawa J., Funaguma T., Ueno O..
Clumping and dispersal of chloroplasts in succulent plants.
Planta.
(2004);
219
500-506
- 12
Kreps J. A., Kay S. A..
Coordination of plant metabolism and development by the circadian clock.
Plant Cell.
(1997);
9
1235-1244
- 13
Lüttge U..
Circadian rhythmicity: is the biological clock hardware or software?.
Progress in Botany.
(2002);
64
277-319
- 14
Lüttge U., Beck F..
Endogenous rhythms and chaos in crassulacean acid metabolism.
Planta.
(1992);
188
28-38
- 15 Martin C. E..
Putative causes and consequences of recycling CO2 via Crassulacean acid metabolism. Winter, K. and Smith, J. A. C., eds. Crassulacean Acid Metabolism. Berlin, Heidelberg;
Springer Verlag (1996): 192-203
- 16
Mawson B. T., Zaugg M. W..
Modulation of light-dependent stomatal opening in isolated epidermis following induction
of Crassulacean acid metabolism in Mesembryanthemum crystallinum L.
Plant Physiology.
(1994);
144
240-246
- 17
McClung C. R..
Circadian rhythms in plants: a millenial view.
Physiologia Plantarum.
(2000);
109
359-371
- 18 Möllering H..
L-Malate. Bestimmung mit Malat-Dehydrogenase und Glutamat-Oxalacetat-Transaminase. Bergmeyer, H. W., ed. Methoden der enzymatischen Analyse, Vol. 25. Weinheim; Verlag
Chemie (1974): 1636-1639
- 19
Nimmo G. A., Wilkins M. B., Fewson C. A., Nimmo H. G..
Persistent circadian rhythms in the phosphorylation carboxylase from Bryophyllum fedtschenkoi leaves and its sensitivity to inhibition by malate.
Planta.
(1987);
170
408-415
- 20
Nimmo H. G..
The regulation of phosphoenolpyruvate carboxylase in CAM plants.
Trends in Plant Science.
(2000);
5
75-80
- 21
Rascher U., Liebig M., Lüttge U..
Evaluation of instant light-response curves of chlorophyll fluoresence parameters
obtained with a portable chlorophyll fluorometer on site in the field.
Plant, Cell and Environment.
(2000);
23
1397-1405
- 22
Rascher U., Hütt Th., Siebke K., Osmond B., Lüttge U..
Spatio-temporal variations of metabolism in a plant circadian rhythm: the biological
clock as an assembly of coupled individual oscillators.
Proceedings of the National Academy of Sciences of the USA.
(2001);
98
11801-11805
- 23
Ritz D., Kluge M..
Circadian rhythmicity of CAM in continuous light: coincidences between gas exchange
parameters, 14CO2 fixation patterns and PEP-carboxylase properties.
Journal of Plant Physiology.
(1987);
131
285-296
- 24
Ting I. P..
Crassulacean acid metabolism.
Annual Review in Plant Physiology.
(1985);
36
595-622
- 25
Wilkins M. B..
Circadian rhythms: their origin and control.
New Phytologist.
(1992);
121
347-375
- 26
Winter K..
Gradient in the degree of Crassulacean acid metabolism within leaves of Kalanchoë daigremontiana.
.
Planta.
(1987);
172
88-90
- 27
Wyka T. P., Lüttge U. E..
Contribution of C3 carboxylation to the circadian rhythm of carbon dioxide uptake
in a Crassulacean acid metabolism plant Kalanchoë daigremontiana.
.
Journal of Experimental Botany.
(2003);
54
1471-1479
- 28
Wyka T. P., Bohn A., Duarte H. M., Kaiser F., Lüttge U..
Perturbations of malate accumulation and the endogenous rhythms of gas exchange in
the Crassulacean acid metabolism plant Kalanchoë daigremontiana: testing the tonoplast as oscillator model.
Planta.
(2004);
219
705-713
T. Wyka
Biology Department, General Botany Laboratory
Adam Mickiewicz University
ul. Umultowska 89
61-614 Poznań
Poland
eMail: twyka@amu.edu.pl
Editor: R. Monson