References
For leading references of NADH models bearing a sulfoxide group, see:
<A NAME="RD34304ST-1A">1a</A>
Li J.
Liu Y.-C.
Deng J.-G.
Tetrahedron: Asymmetry
1999,
10:
4343
<A NAME="RD34304ST-1B">1b</A>
Kazuyuki M.
Nishimoto N.
Hidenobu M.
Asuka M.
Satoshi O.
Yasuko I.
Toshimasa I.
Takeshi I.
Chem. Commun.
1996,
2535
<A NAME="RD34304ST-1C">1c</A>
Obika S.
Nishiyama T.
Tatematsu S.
Miyashita K.
Iwata C.
Imanishi T.
Tetrahedron
1997,
53:
593
<A NAME="RD34304ST-1D">1d</A>
Obika S.
Nishiyama T.
Tatematsu S.
Miyashita K.
Imanishi T.
Chem. Lett.
1996,
853
<A NAME="RD34304ST-1E">1e</A>
Obika S.
Nishiyama T.
Tatematsu S.
Nishimoto M.
Miyashita K.
Imanishi T.
Heterocycles
1998,
261
<A NAME="RD34304ST-1F">1f</A>
Imanishi T.
Obika T.
Nishiyama T.
Nishimoto M.
Hamano Y.
Miyashita K.
Iwata C.
Chem. Pharm. Bull.
1996,
44:
267
For early reports on annelated NADH models, see:
<A NAME="RD34304ST-2A">2a</A>
Levacher V.
Dupas G.
Quéguiner G.
Bourguignon J.
Trends Heterocycl. Chem.
1995,
4:
293
<A NAME="RD34304ST-2B">2b</A>
Dupas G.
Levacher V.
Quéguiner G.
Bourguignon J.
Heterocycles
1994,
39:
405
<A NAME="RD34304ST-2C">2c</A>
Vitry C.
Vasse J.-L.
Levacher V.
Dupas G.
Quéguiner G.
Bourguignon J.
Tetrahedron
2001,
57:
3087
<A NAME="RD34304ST-3">3</A>
Analytical data for (R)-3a: 1H NMR (300 MHz, CDCl3): δ = 2.30 (3 H, s), 7.21 (2 H, d, J = 8 Hz), 7.51 (3 H, m), 7.73 (1 H, m), 7.85 (1 H, d, J = 8 Hz), 8.05 (1 H, d, J = 8 Hz), 8.53 (1 H, s), 8.76 (1 H, s). 13C NMR (75 MHz, CDCl3): δ = 21.8, 125.6, 127.7, 128.3, 128.8, 129.9, 130.7, 131.7, 133.2, 139.5, 141.7,
142.9, 146.2, 149.1. Anal. Calcd for C16H13NOS: C, 71.88; H, 4.90; N, 5.24. Found: C, 71.78; H, 4.82; N, 5.10.
<A NAME="RD34304ST-4">4</A>
Enantiomeric excesses were determined by HPLC analysis using a Chiracel OJ column
(250 × 4.6 mm; 10 µm). Chromatographic conditions: eluent: heptane-2-propanol = 90:10;
flow rate: 1 mL min-1; pressure: 300 psi; temperature: 19 °C; UV detection: λ = 230 nm; t
R: 22 min [(S)-enantiomer] and 26 min [(R)-enantiomer].
<A NAME="RD34304ST-5A">5a</A>
Dumouchel S.
Mongin F.
Trécourt F.
Quéguiner G.
Tetrahedron Lett.
2003,
44:
2033
<A NAME="RD34304ST-5B">5b</A>
Dumouchel S.
Mongin F.
Trécourt F.
Quéguiner G.
Tetrahedron
2003,
44:
8629
<A NAME="RD34304ST-6">6</A>
Analytical data for (R)-4a: 1H NMR (300 MHz, CDCl3): δ = 2.39 (3 H, s), 4.73 (3 H, s), 7.43 (2 H, d, J = 8 Hz), 7.81 (2 H, d, J = 8 Hz), 8.12 (1 H, t, J = 9 Hz), 8.36 (1 H, t, J = 9 Hz), 8.52 (2 H, m), 9.42 (1 H, s), 9.62 (1 H, s). 13C NMR (75 MHz, MeOD): δ = 21.8, 47.5, 120.6, 124.3, 127.2, 131.1, 132.4, 132.8, 132.9,
139.2, 141.3, 141.7, 142.8, 144.9, 145.8, 147.8. 19F NMR (282 MHz, CDCl3): δ = -80.5. HRMS (CI): m/z calcd for C17H16NOS: 282.0953. Found: 282.0957.
<A NAME="RD34304ST-7">7</A> Similar side reactions have already been observed during the reduction of 3-sulfoxide
pyridinium salt under these conditions. See:
Imanishi T.
Hamano Y.
Yoshikawa HT.
Iwata C.
J. Chem. Soc., Chem. Commun.
1988,
473
<A NAME="RD34304ST-8">8</A>
Analytical data for (R)-1a: 1H NMR (300 MHz, CDCl3): δ = 2.76 (3 H, s), 3.45 (1 H, d, J = 19 Hz), 3.59 (3 H, s), 4.13 (1 H, d, J = 19 Hz), 7.05 (1 H, d, J = 8 Hz), 7.27 (2 H, d, J = 8 Hz), 7.47 (1 H, m), 7.65 (3 H, m), 7.87 (2 H, d, J = 8Hz). 13C NMR (75 MHz, CDCl3): δ = 21.7, 23.2, 38.9, 109.7, 112.9, 121.7, 123.3, 125.3, 127.7, 130.0, 130.2, 139.2,
139.3, 140.7, 140.8. HRMS (CI): m/z calcd for C17H17NOS: 283.1031. Found: 283.1035.
<A NAME="RD34304ST-9">9</A>
Charpentier P.
Lobrégat V.
Levacher V.
Dupas G.
Quéguiner G.
Bourguignon J.
Tetrahedron Lett.
1998,
39:
4013
<A NAME="RD34304ST-10">10</A>
Analytical data for 2b: 1H NMR (300 MHz, CDCl3): δ = 3.98 (3 H, s), 4.00 (3 H, s), 6.92 (1 H, s), 7.34 (1 H, s), 8.10 (1 H, s),
8.68 (1 H, s). 13C NMR (75 MHz, CDCl3): δ = 56.5, 56.6, 104.5, 108.3, 115.6, 125.3, 135.8, 143.9, 149.2, 150.9, 153.0.
Anal. Calcd for C11H10BrNO2: C, 49.28; H, 3.76; N, 5.22. Found: C, 49.35; H, 3.82; N, 5.21.
<A NAME="RD34304ST-11">11</A>
Smith AB.
Levenberg PA.
Jerris PJ.
Scarborough RM.
Wovkulich PM.
J. Am. Chem. Soc.
1981,
103:
1501
<A NAME="RD34304ST-12">12</A>
Trofimenko S.
J. Org. Chem.
1963,
28:
3243
<A NAME="RD34304ST-13">13</A> Analytical data for (R)-7b: 1H NMR (300 MHz, CDCl3): δ = 2.29 (3 H, s), 3.93 (6 H, s), 7.02 (1 H, s), 7.20 (2 H, d, J = 8 Hz), 7.33 (1 H, s), 7.51 (2 H, d, J = 8 Hz), 8.29 (1 H, s), 8.62 (1 H, s). 13C NMR (75 MHz, CDCl3): δ = 21.8, 56.6, 56.7, 105.8, 108.3, 123.6, 125.4, 130.6, 131.4, 137.5, 142.1, 142.5,
144.2, 146.7, 151.1, 154.3. HRMS: m/z calcd for C18H17NO3S: 327.0929. Found: 327.0933.
<A NAME="RD34304ST-14">14</A>
Enantiomeric excesses were determined by HPLC analysis using a Chiralpak AD column
(250 × 4.6 mm; 10 µm). Chromatographic conditions: eluent: heptane-2-propanol = 85:15;
flow rate: 1 mL min-1; pressure: 300 psi; temperature: 19 °C; UV detection: λ = 230 nm; t
R = 36 min [(S)-enantiomer] and 40 min [(R)-enantiomer].
<A NAME="RD34304ST-15">15</A>
Analytical data for (R)-8b: 1H NMR (300 MHz, MeOD): δ = 2.39 (3 H, s), 4.06 (3 H, s), 4.20 (3 H, s), 4.62 (3 H,
s), 7.42 (2 H, d, J = 8Hz), 7.61 (1 H, s), 7.76 (3 H, m), 9.09 (1 H, s), 9.28 (1 H, s). 13C NMR (75 MHz, MeOD): δ = 26.7, 51.7, 62.4, 63.3, 130.7, 113.6, 130.8, 132.3, 136.5,
143.7, 143.9, 144.8, 145.5, 146.6, 149.4, 158.6, 165.2. 19F NMR (282 MHz, CDCl3): δ = - 80.25. HRMS: m/z calcd for C19H20NO3S: 342.1164. Found: 342.1165.
<A NAME="RD34304ST-16">16</A>
Analytical data for (R)-1b: 1H NMR (300 MHz, CDCl3): δ = 2.32 (3 H, s), 2.94 (1 H, d, J = 18 Hz), 3.17 (3 H, s), 3.63 (1 H, d, J = 18 Hz), 3.67 (3 H, s), 3.78 (3 H, s), 6.24 (1 H, s), 6.33 (1 H, s), 6.84 (1 H,
s), 7.21 (2 H, d, J = 8Hz), 7.43 (2 H, d, J = 8Hz). 13C NMR (75 MHz, CDCl3): δ = 21.8, 21.9, 39.2, 56.5, 56.6, 98.6, 108.5, 113.1, 113.4, 125.4, 130.0, 132.7,
139.2, 140.6, 140.9, 154.2, 148.3. HRMS (CI):
m/z calcd for C19H21NO3S: 343.1242. Found: 343.1249.
<A NAME="RD34304ST-17">17</A>
Typical Procedure for the Reduction of Methyl Benzoylformate with Mimics 1a,b:
In a flask, flushed with argon, were introduced model 1b (0.283 g, 1 mmol), MeCN (3 mL), methyl benzoylformate (142 µL, 1 mmol) and Mg(ClO4)2 (224 mg, 1 mmol). The resulting solution was stirred at r.t. for 24 h in the dark.
After addition of H2O (10 mL), the organic solvent was evaporated under reduced pressure and the resulting
aqueous phase was extracted with CH2Cl2 (3 × 10 mL). After drying (MgSO4) and evaporation of the solvent, the residue was purified by chromatography on silica
gel (eluent: Et2O-cyclohexane = 2:1). Yield: 50%. Enantiomeric excesses were determined by HPLC analysis
using a Chiracel OD column (250 × 4.6 mm; 10 µm). Chromatographic conditions: injection:
20 µl (0.5 mg of methyl mandelate in 10 mL of hexane); eluent: hexane-2-propanol =
90:10; flow rate: 1 mL min-1; pressure: 300 psi; temperature: 22 °C; UV detection: λ = 235 nm; t
R = 9.2 min [(S)-enantiomer] and 14.8 min [(R)-enantiomer].