Erfahrungsheilkunde 2005; 54(2): 96-102
DOI: 10.1055/s-2005-862513
Originalia

Karl F. Haug Verlag, in: MVS Medizinverlage Stuttgart GmbH & Co. KG

Alternative Krebstherapien mittels physikalisch-chemischer Methoden

Hermann Berg
Further Information

Publication History

Publication Date:
11 February 2005 (online)

Zusammenfassung

Basierend auf bioelektrochemischer Apoptose oder photodynamischer Nekrose von Krebszellen in vitro [[2]] wird nun der heutige Stand von Tumorregressionen bei Tieren und Patienten mittels Photodynamie, Gleichstromelektrolyse, Elektropuls und magnetischer-elektromagnetischer Felder referiert.

Hiermit werden folgende letale Effekte wirksam: Photooxidation von Nukleinsäuren, Verminderung der Mitoserate, elektrolytische Zerstörung der Zellstruktur, Porierung der Zellmembran für beschleunigtes Eindiffundieren von Zytostatika, Apoptose-Induktion und Nekrose, Expressionshemmung des immunoreaktiven p53-Proteins. Unterstützend wirken Kombinationen mit Hyperthermie und Hyperglykämie (pH-Erniedrigung zwecks Membranlabilisierung).

Nachdem auf zellulärer Ebene alle diese Varianten bereits getestet worden sind, haben die meisten davon auch bei Tierversuchen zum Erfolg geführt, während Einsätze bei Patienten bisher nur auf die invasiven Methoden wie Photodynamie, Gleichstromelektrolyse und Elektropuls beschränkt waren. Demgegenüber haben Magnetfelder B > 5 mT wesentliche Vorteile (schmerzfreie Tiefenwirkung), jedoch bedarf es in Deutschland noch mehr Initiative, um optimale Amplituden- und Frequenzfenster zu ermitteln.

Abstract

Based on bioelectrochemical apoptosis or photodynamical necrosis of cancer cells in vitro [[2]] „the state of art” of regression of tumors in animals and patients by photodynamics, direct current-electrolysis, electro pulse and magnetic-electromagnetic fields will be reviewed.

During treatments by them the following effects occur: photo oxidation of nucleic acids, inhibition of mitosis, electrolytic degradation of cell structure, poration of cell membrane causing accelerated penetration of cytostatic drugs, induction of apoptosis and necrosis, inhibition of expression of the immunoreactive p53 protein. These processes are supported by combinations with hyperthermia and hyperglycemia (decrease of pH-value and hence labilization of membrane structure).

After testing all these variants on the cellular level in vitro most of them have been applied for treatments of tumors of animals. But the curing of patients has been restricted up to now to the application of invasive photodynamics, direct-current electrolysis and electro pulse. In contrast to these strong agents the soft, non-invasive magnetic fields B > 5 mT would have essential advantages (painfree deep-effects). However, it needs more initiative in Germany to determine for these methods the optimal „windows” of amplitude and frequency.

Literatur

  • 01 Ardenne M v. Systemische Krebsmehrschritt-Therapie (Hyperthermie und Hyperglykämie als Therapiebasis). Stuttgart; Hippokrates 1997
  • 02 Berg H. Synergistische Steigerung des photodynamischen Effektes bei Krebszellen durch elektromagnetische Feldstimulation.  EHK. 2003;  2 84-9
  • 03 Berg H, Bauer E, Gollmick F, Dietzel W, Meffert H, Sönnichsen N. Photodynamic hematoporphyrin therapy of psoriasis. In: Jori G, Perria C (Eds.): Photodynamic Therapy of Tumors and other Diseases. Padova; Libreria Progretto 1985: 338-43
  • 04 Berg H, Jungstand W. Photodynamische Wirkung auf das solide Ehrlich-Karzinom.  Naturwiss. 1966;  53 481
  • 05 Binhi V. Magnetobiology - underlying physical problems. San Diego; Academic Press 2002
  • 06 Dougherty T. Photodynamic Therapy.  Clin Chest Med. 1985;  6 219-36
  • 07 Elez R, Piiper A, Kronenberger B, Kock M, Brendel M, Hermann E, Pliquett U, Neumann E, Zeuzem S. Tumor regression by combination antisens therapy against PLK-1 and BCL-2.  Oncogene. 2003;  22 69-80
  • 08 Gorgun S. Studies in interaction between electromagnetic fields and living matter neoplastic cellular culture.  Frontier Perspectives. 1998;  7 1-21
  • 09 Hannan C, Liang Y, Allison J, Pantazis C, Searle J. Chemotherapy of human carcinoma xenografts during pulsed magnetic field exposure.  Anticancer Res.. 1994;  14 1521-2
  • 10 Jori G, Perria C, (Eds.). Photodynamic Therapy of Tumors and other Diseases. Padova; Libreria Progretto 1985
  • 11 Kuzelova K, Grebenova D, Pluskalova M, Marinow I, Hrkal Z. Early apoptotic features of K562 cell death induced by 5-aminolävulinic acid-based photodynamic therapy.  J Photochem Photobiol B. 2004;  73 67-78
  • 12 Labanauskien J, Tamosinas M, Bagdonas S, Didziapetrien J, Rotomkis R. Application of electropermialization during experimental photosensitized Tumor therapy.  Acta Medica Litunica. 2002;  9 69-71
  • 13 Lambreva M, Glück B, Radeva M, Berg H. Electroporation of cell membranes supporting penetration of photodynamic active macromolecular chromophor dextrans.  Bioelectrochemistry. 2004;  62 95-8
  • 14 Markov M, Williams C, Cameron I, Hardman W, Salvatore I. Can magnetic field inhibit angiogenesis and tumor growth?. In: Rosch P, Markov M (Eds.): Bioelectromagnetic Medicine. NY; Marcel Dekker 2004: 625-36
  • 15 Moser J. Photodynamic Tumor Therapy, 2nd and 3rd Generation of Photosensitizers. Amsterdam; Harwood Acad. Publ. 1998
  • 16 Nordenström B. Electrochemical treatment of cancer, I. Variable response to anodic and cathodic fields.  Am J Clin Oncol. 1998;  12 530-6
  • 17 Omote Y, Hosokawa M, Komatsomoto M, Namieno T, Nakajima S, Kubo Y, Kobyashi H. Treatment of experimental tumors with combination of pulsing magnetic field and an antitumor drug.  Japan J Cancer Res. 1990;  81 956-61
  • 18 Pallares D, Rosch P. Magneto-metabolic therapy for advanced malignancy and cardiomyopathy. In: Rosch P, Markov M (Eds.): Bioelectromagnetic Medicine. NY; Marcel Dekker 2004: 593-612
  • 19 Pang L, Baciu C, Traitcheva N, Berg H. Photodynamic effect on cancer cells influenced by electromagnetic fields.  J photochem Photobiol. 2001;  64 21-6
  • 20 Rabussay D, Widera G, Burian M. Electroporation therapy: treatment of cancer and other therapeutic applications. In: Rosch P, Markov M (Eds.): Bioelectromagnetic Medicine. NY; Marcel Dekker 2004: 657-96
  • 21 Radeva M, Berg H. Differences in lethality between cancer cells and human lymphocites caused by electromagnetic fields.  Bioelectromagnetics. 2004;  25 503-7
  • 22 Ronchetto F, Barone D, Cintorino M, Berardelli M, Lissolo S, Orlassino R, Ossola P, Tofani S. Extremely low frequency modulated static magnetic fields to treat cancer: a pilot study on patients with advanced neoplasms to assess safety and acute toxicity.  Bioelectromagnetics. 2004;  25 563-76
  • 23 Salvatore I, Harrington J, Kummet J. Phase I clinical study of a static magnetic field combined with anti-neoplastic chemotherapy in the treatment of human malignancy: initial safety and toxicity data.  Bioelectromagnetics. 2003;  24 524-7
  • 24 de Seze R, Tuffe S, Moreau J, Veyret B. Effects of 100 mT time varying magnetic fields on the growth of tumors in mice.  Bioelectromagnetics. 2000;  21 107-11
  • 25 Tofani S, Cintotio M, Barone D, Berardelli M, De Santi M, Ferrara A, Orlassino R, Ossola P, Rolfo K, Ronchetto F, Tripodi S, Tosi P. Increased mouse survival, tumor growth inhibition and decreased immunoreactive p53 after exposure to magnetic fields.  Bioelectromagnetics. 2002;  23 230-8
  • 26 Traitcheva N, Angelova P, Radeva M, Berg H. ELF-fields and photooxidation yielding lethal effects on cancer cells.  Bioelectromagnetics. 2003;  24 148-50
  • 27 Weber H, Berg H. Electrofusion of yeast protoplasts. In: Nikoloff J (Ed.): Electroporation and electrofusion of microorganisms. Totowa; Humana Press 1995
  • 28 Williams C, Markov M. Therapeutic electromagnetic field effects on angiogenesis during tumor growth: a pilot study in mice.  Electro-Magnetobiology. 2001;  20 323-9
  • 29 Xin Y, Zao H, Zhang W, Liang C, Wang Z, Liu G. Electrochemical therapy of tumors. In: Rosch P, Markov M (Eds.): Bioelectromagnetic Medicine. NY; Marcel Dekker 2004: 709-26
  • 30 Zhang L, Widera G, Bleecher S, Zaharoff D, Mossop B, Rabussay D. Accellerated immune response to DNA vaccines. DNA and Cell Biology.  Oncogene. 2003;  22 815-22
  • 31 Radeva M, Lambreva M, Angelova P, Traitcheva N, Berg H. Synergism of electromagnetic fields and photodynamic effects induce apoptosis and necrosis of cancer cells.  Electrochemistry (China). 2004;  10 260-70

Korrespondenzadresse

Prof. Hermann Berg

Laboratorium Bioelektrochemie (Campus Beutenberg, Jena) der Sächsischen Akademie der Wissenschaften zu Leipzig

Greifberg 15

07749 Jena

Email: hbergjena@hotmail.com

    >