Abstract
Dialkyl diselenides have been prepared from alkyl halides, sodium borohydride and
elemental selenium using two different methods. One of them involves the intermediate
formation of diselenide dianion equivalent (- SeSe- ).
Key words
elemental selenium - sodium borohydride - alkylation - alkyl halides - benzyl halides
- dimetal diselenide
References
<A NAME="RG02005ST-1A">1a </A>
Rheinboldt H.
Schwefel-, Selen-, Tellur-Verbindungen In Houben-Weyl, Methoden der Organischen Chemie
Vol. 9:
Müller E.
Georg Thieme;
Stuttgart:
1967.
<A NAME="RG02005ST-1B">1b </A>
Organic Selenium Compounds: Their Chemistry and Biology
Klayman DL.
Gunther WHH.
John Wiley and Sons;
Chichester:
1973.
<A NAME="RG02005ST-1C">1c </A>
Paulmier C. In
Selenium Reagents and Intermediates in Organic Synthesis
Vol. 5:
Baldwin JE.
Pergamon;
Oxford:
1986.
<A NAME="RG02005ST-1D">1d </A>
The Chemistry of Organic Selenium and Tellurium Compounds
Vol. 2:
Patai S.
Rappoport Z.
John Wiley and Sons;
Chichester:
1987.
<A NAME="RG02005ST-1E">1e </A>
Krief A. In
Comprehensive Organometallic Chemistry II
Vol. 11:
Abel EW.
Stone FGA.
Wilkinson G.
McKillop A.
Pergamon;
Oxford:
1995.
p.516
Reduction of Se0 using hydrides:
<A NAME="RG02005ST-2A">2a </A>
Klayman DL.
Griffin TS.
J. Am. Chem. Soc.
1973,
95:
197
<A NAME="RG02005ST-2B">2b </A>
Gladysz JA.
Hornby JL.
Garbe JE.
J. Org. Chem.
1978,
43:
1204
<A NAME="RG02005ST-2C">2c </A>
Bergman JJ.
Engman L.
Synthesis
1980,
569
<A NAME="RG02005ST-2D">2d </A>
Yarada K.
Fujita T.
Yanada R.
Synlett
1998,
971
<A NAME="RG02005ST-2E">2e </A>
Hideharu I.
Mamoru K.
Yoshihisa F.
Futoshi N.
J. Am. Chem. Soc.
2001,
123:
8408
<A NAME="RG02005ST-2F">2f </A>
Yang X.
Wang Q.
Tao Y.
Xu H.
J. Chem. Res., Synop.
2002,
160
<A NAME="RG02005ST-2G">2g </A>
Krief A.
Derock M.
Tetrahedron Lett.
2002,
43:
3083
Reduction of Se0 using metals:
<A NAME="RG02005ST-3A">3a </A>
Brandsma L.
Wijers HE.
Recl. Trav. Chim. Pays-Bas
1963,
82:
68
<A NAME="RG02005ST-3B">3b </A>
Thompson D.
Boudjouk P.
J. Org. Chem.
1988,
53:
2109
<A NAME="RG02005ST-3C">3c </A>
Syper L.
Mlochowski J.
Tetrahedron
1988,
44:
611
<A NAME="RG02005ST-3D">3d </A>
Ping L.
Xunjun Z.
Synth. Commun.
1993,
23:
1721
<A NAME="RG02005ST-4">4 </A> Reduction of Se0 using metal salts:
Sekiguchi M.
Tanaka H.
Takami N.
Ogawa A.
Ryu I.
Sonoda N.
Heteroatom Chem.
1991,
427
Reduction of Se0 using hydrazines:
<A NAME="RG02005ST-5A">5a </A>
Syper L.
Mlochowski J.
Synthesis
1984,
439
<A NAME="RG02005ST-5B">5b </A>
Eggert H.
Nielsen O.
Henriksen L.
J. Am. Chem. Soc.
1986,
108:
1725
<A NAME="RG02005ST-5C">5c </A>
Li JQ.
Bao WL.
Lue P.
Zhou X.-J.
Synth. Commun.
1991,
21:
799
<A NAME="RG02005ST-6">6 </A> Reduction of Se0 using metal hydroxysulfoxylates:
Bird ML.
Challenger F.
J. Chem. Soc.
1942,
570
<A NAME="RG02005ST-7">7 </A> Reaction of aldehydes with ‘dimetal diselenides and dimetal selenides mixture’:
Huang Z.-ZH.
Liu F.-Y.
Du J.-X.
Huang X.
OPPI Briefs
1995,
27:
492
<A NAME="RG02005ST-8">8 </A> Alkylation of metal organic diselenolates:
Krief A.
Van Wemmel T.
Redon M.
Dumont W.
Delmotte C.
Angew. Chem. Int. Ed.
1999,
38:
2245
Oxidation of organic selenols or selenolates using oxygen:
<A NAME="RG02005ST-9A">9a </A>
Fujiwara S.
Miyoshi SN.
Ogawa A.
Kambe N.
Sonoda N.
J. Phys. Org. Chem.
1989,
359
<A NAME="RG02005ST-9B">9b </A>
Clarembeau M.
Cravador A.
Dumont W.
Hevesi L.
Krief A.
Lucchetti J.
Van Ende D.
Tetrahedron
1985,
41:
4793
<A NAME="RG02005ST-9C">9c </A>
Oae S.
Togo H.
Bull. Chem. Soc. Jpn.
1984,
57:
232
<A NAME="RG02005ST-10">10 </A> Oxidation of organic selenols or selenolates using perborate:
McKillop A.
Koyuncu D.
Krief A.
Dumont W.
Renier P.
Trabelsi M.
Tetrahedron Lett.
1990,
31:
5007
Oxidation of organic selenols or selenolates using peroxides:
<A NAME="RG02005ST-11A">11a </A>
Klapoetke T.
Koepf H.
Gowik P.
J. Chem. Soc., Dalton Trans.
1988,
1529
<A NAME="RG02005ST-11B">11b </A>
Krief A.
De Mahieu AF.
Dumont W.
Trabelsi M.
Synthesis
1988,
131
<A NAME="RG02005ST-11C">11c </A>
Reich HJ.
Jasperse CP.
J. Am. Chem. Soc.
1987,
109:
5549
Oxidation of organic selenols or selenolates using iodine:
<A NAME="RG02005ST-12A">12a </A>
Block E.
Birringer M.
Jiang W.
Nakahodo T.
Thompson HJ.
Toscano UPJ.
Zhang H.
Zhu X.
J. Agric. Food Chem.
2001,
49:
458
<A NAME="RG02005ST-12B">12b </A>
Meinke PT.
Krafft GA.
Guram AJ.
J. Org. Chem.
1988,
53:
3632
<A NAME="RG02005ST-13A">13a </A>
Krief A.
Trabelsi M.
Dumont W.
Derock M.
Synlett
2004,
1751
<A NAME="RG02005ST-13B">13b </A>
Synthesized by protonation (formic acid, 2.5-4 equiv) of selenide dianion equivalent
[from elemental selenium, NaBH4 and EtOH (1:2:6) in DMF].
[13a ]
<A NAME="RG02005ST-14">14 </A>
Typically mixing elemental selenium, NaBH4 and EtOH (1:1:3 molar equiv each) leads to the evolvement of dihydrogen (2.58 molar
equiv, 86% of the expected amount), sequential addition of DMF and decyl bromide produces
an additional formation of hydrogen (0.42 molar equiv, 14% of the expected amount).
<A NAME="RG02005ST-15">15 </A> We have been unable to determine the structure of these species by 77 Se NMR. For a related work see:
Cusik J.
Dance I.
Polyhedron
1991,
10:
2629
<A NAME="RG02005ST-16A">16a </A>
in fact, we found in a control experiment that 6 molar equiv of dihydrogen escape
from the medium (experimentally 97% of this amount) on reaction of selenium, NaBH4 and EtOH (1:2:6 mol equiv).
<A NAME="RG02005ST-16B">16b </A>
Another 0.81 molar equiv of dihydrogen is evolved if aq EtOH (4 molar equiv each),
is added before that of the second crop of elemental selenium.
<A NAME="RG02005ST-17A">17a </A>
Liotta D.
Sunay U.
Santiesteban H.
Markiewick W.
J. Org. Chem.
1981,
46:
2605
<A NAME="RG02005ST-17B">17b </A>
Dowd P.
Kennedy P.
Synth. Commun.
1991,
935
<A NAME="RG02005ST-17C">17c </A>
Krief A.
Trabelsi M.
Dumont W.
Synthesis
1992,
933
<A NAME="RG02005ST-17D">17d </A>
Krief A.
Trabelsi M.
Synth. Commun.
1989,
19:
1203
<A NAME="RG02005ST-17E">17e </A>
Pedersen ML.
Berkovictz DB.
J. Org. Chem.
1993,
58:
6966
<A NAME="RG02005ST-18">18 </A>
Miyashita M.
Hosshino M.
Yoshikoshi A.
Tetrahedron Lett.
1988,
29:
347