J Reconstr Microsurg 2005; 21(2): 137-143
DOI: 10.1055/s-2005-864848
Copyright © 2005 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Comparison of Bacterial Inoculation and Transcutaneous Oxygen Tension in the Rabbit S1 Perforator and Latissimus Dorsi Musculocutaneous Flaps

Aldo Benjamin Guerra1 , Paul Singh Gill2 , Chris G. Trahan2 , Bernardo Ruiz2 , Kerstin M. Lund2 , Christie L. Delaune2 , Brett A. Thibodeaux2 , Stephen Eric Metzinger1
  • 1Aesthetic Surgery Associates, Metairie, Louisiana
  • 2Department of Pathology, Louisiana State University Health Sciences Center, New Orleans, LA
Further Information

Publication History

Accepted: September 21, 2004

Publication Date:
28 February 2005 (online)

ABSTRACT

Muscle and musculocutaneous flaps have been used reliably in reconstruction of soft-tissue defects for many years. Previous experimental studies have shown musculocutaneous flaps to be superior to the random pattern and fasciocutaneous flaps in the management of infected wounds. Over the past decade, perforator flaps have gained acceptance as alternative methods of reconstruction in the clinical setting that can decrease donor-site morbidity and hospital stay, and increase patient satisfaction. The authors theorized that perforator flaps may be able to handle infected wounds better than random pattern and fasciocutaneous flaps because their blood supply is essentially the same as many of their musculocutaneous counterparts. The goal of this study was to compare the S1 perforator-based skin flap and latissimus dorsi musculocutaneous flap in the dorsal flank of the rabbit with the introduction of bacteria to simulate both superficial and deep wound infection. Measurements of oxygen tension and regional perfusion index were performed on both types of flaps to ascertain their viability and capacity to heal. The authors found no statistical significance between latissimus dorsi musculocutaneous and S1 perforator flaps in the rabbit with respect to superficial and deep wound infections. The regional perfusion index was calculated for postoperative days 1, 2, and 4. No statistically significant difference between the two flaps using the regional perfusion index could be identified. Additionally, regional perfusion for both types of flaps was greater than 0.6, indicating that their capacity to heal wounds is similar.

REFERENCES

  • 1 Arnold P G, Yugueros P, Hanssen A D. Muscle flaps in osteomyelitis of the lower extremity: a 20-year account.  Plast Reconstr Surg. 2000;  106 503-504
  • 2 Kroll S S, Sharma S, Koutz et al.. Postoperative morphine requirements of free TRAM and DIEP flaps.  Plast Reconstr Surg. 2001;  107 338-341
  • 3 Blondeel P N, Vanderstraeten G G, Monstrey S J et al.. The donor site morbidity of free DIEP flaps and free TRAM flaps for breast reconstruction.  Br J Plast Surg. 1997;  50 322-330
  • 4 Blondeel P N, Van Landuyt K, Hamdi M, Monstrey S J. Perforator flap terminology: update 2002.  Clin Plast Surg. 2003;  30 343-346
  • 5 Calderon W, Chang N, Mathes S J. Comparison of the effect of bacterial inoculation in musculocutaneous and fasciocutaneous flaps.  Plast Reconstr Surg. 1986;  77 785-792
  • 6 Chang N, Mathes S J. Comparison of the effect of bacterial inoculation in musculocutaneous and random-pattern flaps.  Plast Reconstr Surg. 1982;  70 1-10
  • 7 de Moura W, Sagi A, Ferder M, Strauch B. A new experimental model for myocutaneous flaps: latissimus dorsi of the rabbit-an anatomic study.  Plast Reconstr Surg. 1986;  77 484-485
  • 8 Boustred A M. The rabbit dorsal flank flap.  J Reconstr Microsurg. 1997;  13 331-335
  • 9 Morris S F, Taylor G I. Predicting the survival of experimental skin flaps with a knowledge of the vascular architecture.  Plast Reconstr Surg. 1993;  92 1352-1361
  • 10 Angel M F, Khazanchi R K, O'Brien B M. The anatomy of the subscapular artery and its effects on flap design in the rabbit.  Ann Plast Surg. 1990;  24 152-155
  • 11 Heitmann C, Guerra A, Metzinger S W, Levin L S, Allen R J. The thoracodorsal artery perforator flap: anatomic basis and clinical application.  Ann Plast Surg. 2003;  51 23-29
  • 12 Guerra A B, Metzinger S E, Lund K M, Cooper M M, Allen R J, Dupin C L. The thoracodorsal artery perforator flap: clinical experience and anatomic study with emphasis on harvest techniques.  Plast Reconstr Surg. 2004;  114 32-41
  • 13 Murphy R C, Robson M C, Heggers J P, Kadowaki M. The effect of microbial contamination on musculocutaneous and random flaps.  J Sug Res. 1986;  41 75-80
  • 14 Hauser C J, Shoemaker W C. Use of transcutaneous PO2 regional perfusion index to quantify tissue perfusion in peripheral vascular disease.  Ann Surg. 1983;  197 337-343
  • 15 Hauser C J. Tissue salvage by mapping of skin surface transcutaneous oxygen tension index.  Arch Surg. 1987;  122 1128-1130
  • 16 Feng L J, Price D C, Mathes S J, Hohn D. Dynamic properties of blood flow and leukocyte mobilization in infected flaps.  World J Surg. 1990;  14 796-803
  • 17 Eshima I, Mathes S J, Paty P. Comparison of the intracellular bacterial killing activity of leukocytes in musculocutaneous and random pattern flaps.  Plast Reconstr Surg. 1990;  86 541-547
  • 18 Jonsson K, Hunt T K, Mathes S J. Oxygen as an isolated variable influences resistance to infection.  Ann Surg. 1988;  208 783-787
  • 19 Robson M C. Comparison of the effect of bacterial inoculation in musculocutaneous and fasciocutaneous flaps [Discussion].  Plast Reconstr Surg. 1986;  77 793-794
  • 20 Akyurek M, Safak T, Manavbasi I, Kecik A. A rat musculocutaneous flap model: the biceps femoris musculocutaneous flap.  Ann Plast Surg. 2000;  45 305-312
  • 21 Coskunfirat O K, Islamoglu K, Ozgentas H E. Posterior thigh perforator-based flap: a new experimental model in rats.  Ann Plast Surg. 2002;  48 286-291
  • 22 Oksar H S, Coskunfirat O K, Ozgentas H E. Perforator-based flap in rats: a new experimental model.  Plast Reconstr Surg. 2001;  108 125-131

Aldo Benjamin GuerraM.D. 

Aesthetic Surgical Associates

3601 Houma Boulevard, Suite 300, Metairie, LA 70006

    >