Abstract
A series of novel polymer-supported thioesters were prepared and found to be effective
catalysts for the enantioselective addition of diethylzinc to benzaldehyde. These
catalysts gave 1-phenylpropanol in up to 86% ee. The catalysts were fully recyclable
and could be used in subsequent additions with retention of the enantioselectivity
and efficiency levels.
Key words
asymmetric catalysis - ligands - nucleophilic additions - polymers - supported catalysis
References <A NAME="RD04005ST-1">1 </A>
Present address: Departamento de Química y Biología, Universidad del Norte, Km 5 via
Puerto Colombia, Barranquilla, Colombia.
<A NAME="RD04005ST-2">2 </A> For reviews see:
Pu L.
Hong-Bin Y.
Chem. Rev.
2001,
101:
757
For reviews of soluble enantioselective catalysts see:
<A NAME="RD04005ST-3A">3a </A>
Soai K.
Shibata T. In Comprehensive Asymmetric Catalysis
Vol. 2:
Jacobsen EN.
Pfalz A.
Yamamoto H.
Springer-Verlag;
Berlin:
1999.
p.911-922
<A NAME="RD04005ST-3B">3b </A>
Noyori R. In Asymmetric Catalysis in Organic Synthesis
Wiley;
New York:
1994.
p.260-278
<A NAME="RD04005ST-3C">3c </A>
Soai K.
Niwa S.
Chem. Rev.
1992,
92:
833
<A NAME="RD04005ST-3D">3d </A>
Noyori R.
Kitamura M.
Angew. Chem., Int. Ed. Engl.
1991,
30:
46
For reviews of polymer-supported catalysts see:
<A NAME="RD04005ST-4A">4a </A>
Fan Q.-H.
Li Y.-M.
Chan ASC.
Chem. Rev.
2002,
102:
3385
<A NAME="RD04005ST-4B">4b </A>
de Miguel YR.
Brulé E.
Margue RG.
J. Chem. Soc., Perkin Trans. 1
2001,
3085
<A NAME="RD04005ST-4C">4c </A>
Clapham B.
Reger TS.
Janda KD.
Tetrahedron
2001,
57:
4637
<A NAME="RD04005ST-5A">5a </A>
Hof RP.
Poelert MA.
Peper NCMW.
Kellogg RM.
Tetrahedron: Asymmetry
1994,
5:
31
<A NAME="RD04005ST-5B">5b </A>
Fitzpatrick K.
Hulst R.
Kellogg RM.
Tetrahedron: Asymmetry
1995,
6:
1861
<A NAME="RD04005ST-5C">5c </A>
Kang J.
Lee DJW.
Kim JI.
Chem. Commun.
1994,
2009
<A NAME="RD04005ST-5D">5d </A>
Kang J.
Kim DS.
Kim JI.
Synlett
1994,
842
<A NAME="RD04005ST-5E">5e </A>
Masaki Y.
Satoh Y.
Makihara T.
Shi M.
Chem. Pharm. Bull.
1996,
44:
454
<A NAME="RD04005ST-5F">5f </A>
Gibson CL.
Chem. Commun.
1996,
645
<A NAME="RD04005ST-5G">5g </A>
Kang J.
Kim JB.
Kim JW.
Lee D.
J. Chem Soc., Perkin Trans. 2
1997,
189
<A NAME="RD04005ST-5H">5h </A>
Nakano H.
Kumagai N.
Matsuzaki H.
Kabuto C.
Hongo H.
Tetrahedron: Asymmetry
1997,
8:
1391
<A NAME="RD04005ST-5I">5i </A>
Iwasa K.
Hongo H.
Heterocycles
1997,
46:
267
<A NAME="RD04005ST-5J">5j </A>
Chelucci G.
Berta D.
Fabbri D.
Pinna GA.
Saba A.
Ulgheri F.
Tetrahedron: Asymmetry
1998,
9:
1933
<A NAME="RD04005ST-5K">5k </A>
Aurich HG.
Soeberdt M.
Tetrahedron Lett.
1998,
39:
2553
<A NAME="RD04005ST-5L">5l </A>
Kossenjans M.
Soebert M.
Wallbaum S.
Harms K.
Martens J.
Aurich HG.
J. Chem Soc., Perkin Trans. 1
1999,
2353
<A NAME="RD04005ST-5M">5m </A>
Tseng S.-L.
Yang T.-K.
Tetrahedron: Asymmetry
2004,
15:
3375
For recent examples of b-amino sulfur ligands as catalysts in the diethylzinc addition
to aldehydes see:
<A NAME="RD04005ST-6A">6a </A>
Braga AL.
Milani P.
Paixão MW.
Zeni G.
Rodrigues OED.
Alves EF.
Chem. Commun.
2004,
2488
<A NAME="RD04005ST-6B">6b </A>
Braga AL.
Vargas F.
Silveira CC.
de Andrade LH.
Tetrahedron Lett.
2002,
43:
2335
<A NAME="RD04005ST-6C">6c </A>
Braga AL.
Appelt HR.
Schneider PH.
Rodrigues OED.
Silveira CC.
Wessjohann LA.
Tetrahedron
2001,
57:
3291
<A NAME="RD04005ST-6D">6d </A>
Jimeno C.
Moyano A.
Pericàs MA.
Riera A.
Synlett
2001,
1152
<A NAME="RD04005ST-7">7 </A> For examples of the lower catalytic effectiveness of β-amino thioethers over
the corresponding disulfides see:
Braga AL.
Appelt HR.
Schneider PH.
Silveira CC.
Wessjohann LA.
Tetrahedron: Asymmetry
1999,
10:
1733
<A NAME="RD04005ST-8A">8a </A> In related amino aryl diselenides, Wirth et al. have unequivocally established
that an ethyl selenide (45% yield) is obtained upon treatment with diethylzinc. This
ethyl selenide was proven not to be the dominant catalytically active species in the
addition of diethylzinc to benzaldehyde (17% yield). Furthermore, these workers also
provided NMR evidence for zinc selenolate dimers. See:
Wirth T.
Kulicke KJ.
Fragale G.
Helv. Chim. Acta
1996,
79:
1957
<A NAME="RD04005ST-8B">8b </A> A similar observation has been made that selenoethers derived from aliphatic
amino diselenides are not catalytically productive:
Braga AL.
Paixão MW.
Lüdtke DS.
Silveira CC.
Rodrigues OED.
Org. Lett.
2003,
5:
2635
<A NAME="RD04005ST-9">9 </A>
Gibson CL.
Tetrahedron: Asymmetry
1999,
10:
1551
<A NAME="RD04005ST-10">10 </A>
Kleijn H.
Rijnberg E.
Jastrzebski JTBH.
van Koten G.
Org. Lett.
1999,
1:
853
<A NAME="RD04005ST-11">11 </A>
Lui G.
Ellman JA.
J. Org. Chem.
1995,
60:
7712
<A NAME="RD04005ST-12">12 </A>
Hanessian S.
Xie F.
Tetrahedron Lett.
1998,
39:
733
<A NAME="RD04005ST-13">13 </A>
Hanessian S.
Huynh HK.
Tetrahedron Lett.
1999,
40:
671
<A NAME="RD04005ST-14">14 </A>
Lecavalier P.
Bald E.
Jiang Y.
Fréchet JMJ.
Reactive Polymers
1985,
3:
315
<A NAME="RD04005ST-15">15 </A>
Typical Procedure for the Synthesis of the Polymer-Supported Thioesters 6 and 7.
To a stirred solution of [(2S )-1-(polystyrylmethyl)pyrrol-idinyl]methanol (0.5008 g) and triphenylphosphine (0.5885
g) in anhyd toluene (10 mL) under nitrogen was added at r.t. a solution of DEAD (0.3912
g) in toluene (1 mL). After 3-5 min thiobenzoic acid (0.3012 g) in toluene (1 mL)
was added. The resulting mixture was stirred for a further 45 h at r.t. At the completion
of this period the polymer was filtered and rinsed with toluene, DMF and EtOH. The
polymer beads were then transferred to a soxhlet apparatus and washed with THF for
1 d, rinsed with acetone and finally soxhlet extracted with Et2 O for 1 d. The beads were then dried in a drying pistol (40 °C, 0.05 mmHg) for 24
h to give 0.5639 g of polymer. IR (KBr): νmax = 1664 cm-1 . Anal. Calcd: N, 2.08; S, 4.78. Found: N, 1.94; S, 3.82. Loading 1.19 mmol S/g and
an 80% conversion based on sulfur microanalysis.
<A NAME="RD04005ST-16">16 </A>
Yelm KE.
Tetrahedron Lett.
1999,
40:
1101
<A NAME="RD04005ST-17">17 </A>
Govindachari TR.
Rajagopalan TG.
Viswanathan N.
J. Chem. Soc., Perkin Trans. 1
1974,
1161
<A NAME="RD04005ST-18">18 </A>
Typical Procedure for the Enantioselective Addition of Diethylzinc to Benzaldehyde
Catalysed by Polymer-Supported Catalysts 6-8.
Diethylzinc (1.87 mL of a 1 M solution in hexane, 1.87 mmol) was added to a stirred
solution of the catalyst (0.024 mmol, 0.048 mmol, or 0.096 mmol based on sulfur content)
in anhyd toluene (5 mL) under a nitrogen atmosphere. After stirring at r.t. for 2
h the solution was cooled to -27 °C whereupon, freshly distilled benzaldehyde (0.937
mmol) was added and the resulting solution was stirred at 0 °C. After stirring for
19 h at this temperature additional diethylzinc was added (1.87 mL, 1.87 mmol) and
the mixture stirred for a further 46 h at 0 °C. At the completion of this period there
was no starting aldehyde, so HCl was added (1 M, 3 mL). The aqueous phase was extracted
with CH2 Cl2 (3 × 10 mL) and dried over Na2 SO4 . Evaporation of the solvent and silica column chromatography (hexane-EtOAc, 88:12)
afforded (R )-(+)-1-phenyl-1-propanol as a colourless oil. 1 H NMR (CDCl3 ): δ = 0.9 (t, 3 H, CH2 CH
3 , J = 7.4 Hz), 1.65-2.00 (m, 3 H, CH
2 CH3 , J = 7.4 Hz, OH ), 4.60 (t, 1 H, CH OH, J = 6.6 Hz), 7.30-7.40 (m, 5 H, ArCH ). The ee was determined by HPLC using a DAICEL chiralcel OB column with 3% i -PrOH in hexane (flowrate: 0.5 mL/min); t
R = 25 min for the S -isomer and 31 min for the R -isomer.
<A NAME="RD04005ST-19">19 </A>
Itsuno S.
Fréchet JMJ.
J. Org. Chem.
1987,
52:
4140
<A NAME="RD04005ST-20">20 </A>
Sung DW.
Hodge P.
Stratford PW.
J. Chem. Soc., Perkin Trans. 1
1999,
1463