Abstract
β-Amino ketones and α-amino nitriles were synthesized from silyl enol ethers and trimethylsilyl
cyanides, via a three-component nucleophilic addition reaction with aromatic aldehydes
and amines; the reaction was found to be significantly accelerated by molecular iodine
under neutral conditions.
Key words
molecular iodine - imine activation - three-component reaction - Mannich-type reaction
- Strecker-type reaction
References
<A NAME="RS01705ST-1A">1a </A>
Córdova A.
Acc. Chem. Res.
2004,
37:
102
<A NAME="RS01705ST-1B">1b </A>
Gröger H.
Chem. Rev.
2003,
103:
2795
<A NAME="RS01705ST-1C">1c </A>
Kobayashi S.
Ishitani H.
Chem. Rev.
1999,
99:
1069
<A NAME="RS01705ST-2A">2a </A>
Weinreb SM.
Comprehensive Organic Synthesis
Vol. 5:
Trost BM.
Fleming I.
Pergamon;
Oxford:
1991.
p.401
<A NAME="RS01705ST-2B">2b </A>
Boger DL.
Weinreb SM.
Hetero Diels-Alder Methodology in Organic Synthesis
Academic;
San Diego:
1987.
Chap. 2.
<A NAME="RS01705ST-2C">2c </A>
Boger DL.
Weinreb SM.
Hetero Diels-Alder Methodology in Organic Synthesis
Academic;
San Diego:
1987.
Chap. 9.
<A NAME="RS01705ST-3A">3a </A>
Ojima I.
Inaba S.-I.
Yoshida K.
Tetrahedron Lett.
1977,
18:
3643
<A NAME="RS01705ST-3B">3b </A>
Veenstra SJ.
Schmid P.
Tetrahedron Lett.
1997,
38:
997
<A NAME="RS01705ST-4">4 </A>
Kobayashi S.
Sugiura M.
Kitagawa H.
Lam WW.-L.
Chem. Rev.
2002,
102:
2227
<A NAME="RS01705ST-5A">5a </A>
Bhosale RS.
Bhosale SV.
Bhosale SV.
Wang T.
Zubaidha PK.
Tetrahedron Lett.
2004,
45:
7187
<A NAME="RS01705ST-5B">5b </A>
Phukan P.
J. Org. Chem.
2004,
69:
4005
<A NAME="RS01705ST-5C">5c </A>
Yadav JS.
Reddy BVS.
Rao KV.
Raj KS.
Rao PP.
Prasada AR.
Gunasekar D.
Tetrahedron Lett.
2004,
45:
6505
<A NAME="RS01705ST-5D">5d </A>
Bandgar BP.
Bettigeri SV.
Joshi NS.
Synth. Commun.
2004,
34:
1447
<A NAME="RS01705ST-5E">5e </A>
Phukan P.
Synth. Commun.
2004,
34:
1065
<A NAME="RS01705ST-5F">5f </A>
Karimi B.
Golshani B.
Synthesis
2002,
784
<A NAME="RS01705ST-5G">5g </A>
He Z.
Gao G.
Hand ES.
Kispert LD.
Strand A.
Liaaen-Jensen S.
J. Phys. Chem. A
2002,
106:
2520
<A NAME="RS01705ST-5H">5h </A>
Xu X.
Zhang Y.
Synth. Commun.
2002,
32:
2643
<A NAME="RS01705ST-5I">5i </A>
Basu MK.
Samajdar S.
Becker FF.
Banik BK.
Synlett
2002,
319
<A NAME="RS01705ST-5J">5j </A>
Yadav JS.
Reddy BVS.
Rao CV.
Rao KV.
J. Chem. Soc., Perkin Trans. 1
2002,
1401
<A NAME="RS01705ST-5K">5k </A>
Ramalinga K.
Vijayalakshmi P.
Kaimal TNB.
Tetrahedron Lett.
2002,
43:
879
<A NAME="RS01705ST-5L">5l </A>
Yadav JS.
Chand PK.
Anjaneyulu S.
Tetrahedron Lett.
2002,
43:
3783
<A NAME="RS01705ST-5M">5m </A>
Periana RA.
Mirinov O.
Taube DJ.
Gamble S.
Chem. Commun.
2002,
20:
2376
<A NAME="RS01705ST-5N">5n </A>
Firouzabadi H.
Iranpoor N.
Sobhani S.
Tetrahedron Lett.
2002,
43:
3653
<A NAME="RS01705ST-6">6 </A>
Lee BS.
Mahajan S.
Janda KD.
Tetrahedron Lett.
2005,
46:
807
<A NAME="RS01705ST-7">7 </A>
Typical Procedure for β-Amino Ketone and α-Amino Nitrile Synthesis.
To a MeOH solution (10 mL) was added aldehyde (1.0 mmol), aniline (1.1 mmol) and nucleophile
(1.2 mmol, silyl enol ether for β-amino ketone or trimethylsilyl cyanide for α-amino
nitrile). Upon completion of the reaction (monitored by TLC), aq Na2 SO3 (1 mL) and H2 O (100 mL) were added. The organic compounds were extracted with EtOAc (3 × 20 mL)
from the aqueous solution and the combined extract was dried over Na2 SO4 . The solvent was evaporated under reduced pressure. The residue was purified by flash
chromatography on silica gel to afford pure product, characterized by 1 H NMR, 13 C NMR and mass spectrometry.