Abstract
A direct coupling of carboxylic acids with 2-aminophenol under microwave irradiation
has been achieved leading to the synthesis of 2-substituted benzoxazoles under metal
and solvent-free conditions. Aliphatic, aromatic and heteroaromatic carboxylic acids
provide good yields. Benzoxazole formation takes place in the presence of chloro,
methoxy, phenoxy, thiophenoxy, and α,β-unsaturated functionalities. In the case of
dicarboxylic acids, the reaction proceeds via the formation of the corresponding anhydride
with predominant formation of the mono-benzoxazole.
Key words
benzoxazole - carboxylic acid - 2-aminophenol - direct coupling - microwave - metal-free
References
<A NAME="RD02205ST-1">1 </A>
Sun L.-Q.
Chen J.
Bruce M.
Deskus JA.
Epperson JR.
Takaki K.
Johnson G.
Iben L.
Mahle CD.
Ryan E.
Xu C.
Bioorg. Med. Chem. Lett.
2004,
14:
3799 ; and references therein
<A NAME="RD02205ST-2">2 </A>
Gong B.
Hong F.
Kohm C.
Bonham L.
Klein P.
Bioorg. Med. Chem. Lett.
2004,
14:
1455
<A NAME="RD02205ST-3">3 </A>
Paramshivappa R.
Kumar PP.
Subba Rao PV.
Srinivasa Rao A.
Bioorg. Med. Chem. Lett.
2003,
13:
657
<A NAME="RD02205ST-4">4 </A>
Kumar D.
Jacob MR.
Reynolds MB.
Kerwin SM.
Bioorg. Med. Chem.
2002,
10:
3997
<A NAME="RD02205ST-5">5 </A>
López-Tudanca PL.
Labeaga L.
Innerárity A.
Alonso-Cires L.
Tapia I.
Mosquera R.
Orjales A.
Bioorg. Med. Chem.
2003,
11:
2709
<A NAME="RD02205ST-6A">6a </A>
Kočí J.
Klimeová V.
Waisser K.
Kaustová J.
Dahse H.-M.
Möllmann U.
Bioorg. Med. Chem. Lett.
2002,
12:
3275
<A NAME="RD02205ST-6B">6b </A>
Temiz Ö.
Ören I.
Şener E.
Yalçin I.
Uçarturk N.
Il Farmaco
1998,
53:
337 ; and references cited therein
<A NAME="RD02205ST-7">7 </A>
Edwards PD.
Meyer EF.
Vijayalakshmi J.
Tuthill PA.
Andisik DA.
Gomes B.
Strimpler A.
J. Am. Chem. Soc.
1992,
114:
1854
<A NAME="RD02205ST-8">8 </A>
Lin LS.
Lanza TJ.
Castonguay LA.
Kamenecka T.
McCauley E.
Riper GV.
Egger LA.
Mumford RA.
Tong X.
MacCoss M.
Schmidt JA.
Hagmann WK.
Bioorg. Med. Chem. Lett.
2004,
14:
2331
<A NAME="RD02205ST-9A">9a </A>
Heynderickx A.
Guglielmetti R.
Dubest R.
Aubard J.
Samat A.
Synthesis
2003,
1112
<A NAME="RD02205ST-9B">9b </A>
Organic Photochromes
El’tsov AV.
Plenum Press;
New York:
1990.
p.178
<A NAME="RD02205ST-10A">10a </A>
Heathcock CH. In
Comprehensive Organic Synthesis
Vol. 2:
Trost BM.
Flemming I.
Pergamon Press;
New York:
1991.
<A NAME="RD02205ST-10B">10b </A>
Reser A.
Leyshon LJ.
Saunders D.
Mijovic MV.
Bright A.
Bogie J.
J. Am. Chem. Soc.
1972,
94:
2414
<A NAME="RD02205ST-11A">11a </A>
Cohen VI.
Pourabass S.
J. Heterocycl. Chem.
1977,
14:
1321
<A NAME="RD02205ST-11B">11b </A>
Cohen VI.
J. Heterocycl. Chem.
1979,
16:
13
<A NAME="RD02205ST-12A">12a </A>
Chen C.
Chen Y.-J.
Tetrahedron Lett.
2004,
45:
113
<A NAME="RD02205ST-12B">12b </A>
Nadaf RN.
Siddiqui SA.
Daniel T.
Lahoti RJ.
Srinivasan KV.
J. Mol. Catal. A: Chem.
2004,
214:
155
<A NAME="RD02205ST-12C">12c </A>
Pottorf RS.
Chadha NK.
Katevics M.
Ozola V.
Suna E.
Ghane H.
Regberg T.
Player MR.
Tetrahedron Lett.
2003,
44:
175
<A NAME="RD02205ST-13">13 </A>
Tauer E.
Grellmann KH.
J. Org. Chem.
1981,
46:
4252
<A NAME="RD02205ST-14A">14a </A>
Kawashita Y.
Nakamichi N.
Kawabata H.
Hayashi M.
Org. Lett.
2003,
5:
3713 ; and references therein
<A NAME="RD02205ST-14B">14b </A>
Wilfred CD.
Taylor RKJ.
Synlett
2004,
1628
<A NAME="RD02205ST-14C">14c </A>
Bougrin K.
Loupy A.
Soufiaoudi M.
Tetrahedron
1998,
54:
8055
<A NAME="RD02205ST-15">15 </A>
Park MS.
Jun K.
Shin SR.
Oh SW.
Park KH.
J. Heterocycl. Chem.
2002,
39:
1279 ; and references therein
<A NAME="RD02205ST-16A">16a </A>
El-Sheikh MI.
Marks A.
Biehl ER.
J. Org. Chem.
1981,
46:
3256
<A NAME="RD02205ST-16B">16b </A>
Park Y.-T.
Jung C.-H.
Kim K.-W.
J. Org. Chem.
1999,
64:
8546
<A NAME="RD02205ST-17">17 </A>
Wang F.
Hauske JR.
Tetrahedron Lett.
1997,
37:
6529
<A NAME="RD02205ST-18">18 </A>
DeLuca MR.
Kerwin SM.
Tetrahedron
1997,
53:
457
<A NAME="RD02205ST-19">19 </A>
Shimada T.
Yamamoto Y.
J. Am. Chem. Soc.
2003,
125:
6646
<A NAME="RD02205ST-20">20 </A>
Kiselyov AS.
Tetrahedron Lett.
1999,
40:
4119
<A NAME="RD02205ST-21">21 </A>
Zificsak CA.
Hlasta DJ.
Tetrahedron
2004,
60:
8991
<A NAME="RD02205ST-22A">22a </A>
Heine DW.
Alheim RJ.
Leavitt JJ.
J. Am. Chem. Soc.
1957,
79:
427
<A NAME="RD02205ST-22B">22b </A>
Knaoka Y.
Hamada T.
Yonemitsu O.
Chem. Pharm. Bull.
1970,
18:
587
<A NAME="RD02205ST-23">23 </A>
Terashima M.
Ishii M.
Kanaoka Y.
Synthesis
1982,
484
<A NAME="RD02205ST-24">24 </A>
Cho CS.
Kim DT.
Zhang JQ.
Ho S.-L.
Kim T.-J.
Shim SC.
J. Heterocycl. Chem.
2002,
39:
421
<A NAME="RD02205ST-25">25 </A>
Lidstorm P.
Tierney J.
Wathey B.
Westman J.
Tetrahedron
2001,
54:
9225
<A NAME="RD02205ST-26A">26a </A>
Yildiz-Oren I.
Yalcin I.
Aki-Sener E.
Ucarturk N.
Eur. J. Med. Chem.
2004,
39:
291
<A NAME="RD02205ST-26B">26b </A>
Verma M.
Tripathi M.
Saxena AK.
Shanker K.
Eur. J. Med. Chem.
1994,
29:
941
<A NAME="RD02205ST-26C">26c </A>
Yalcin .
Ören .
Sener E.
Akin A.
Ucartürk N.
Eur. J. Med. Chem.
1992,
27:
401
<A NAME="RD02205ST-27">27 </A>
The work cited under ref. 14c deals with only three examples of benzoxazole formation
by microwave-assisted condensation of aromatic carboxylic acids with 2-aminophenol.
<A NAME="RD02205ST-28">28 </A>
Garrett RL. In
Designing Safer Chemicals
Garrett RL.
De Vito SC.
American Chemical Society Symposium Series 640;
Washington DC:
1996.
Chap. 1.