References
<A NAME="RU09905ST-1A">1a</A>
Aubry C.
Patel A.
Mahale S.
Chaudhuri B.
Marechal J.-D.
Sutcliffe MJ.
Jenkins PR.
Tetrahedron Lett.
2005,
46:
1423
<A NAME="RU09905ST-1B">1b</A>
Marugan JJ.
Manthey C.
Anaclerio B.
Lafrance L.
Lu T.
Markotan T.
Leonard KA.
Crysler C.
Eisennagel S.
Dasgupta M.
Tomczuk B.
J. Med. Chem.
2005,
48:
926
<A NAME="RU09905ST-1C">1c</A>
Fukuyama T.
Chen X.-Q.
J. Am. Chem. Soc.
1994,
116:
3125
<A NAME="RU09905ST-1D">1d</A>
Vaillancourt V.
Albizati KF.
J. Am. Chem. Soc.
1993,
115:
3499
<A NAME="RU09905ST-2A">2a</A>
Zhang H.-C.
Ye H.
Moretto AF.
Brumfield KK.
Maryanoff BE.
Org. Lett.
2000,
2:
89
<A NAME="RU09905ST-2B">2b</A>
Faul MM.
Winneroski LL.
Krumrich CA.
J. Org. Chem.
1998,
63:
6053
<A NAME="RU09905ST-2C">2c</A>
Bennasar M.-L.
Vidal B.
Bosch J.
J. Org. Chem.
1997,
62:
3597
<A NAME="RU09905ST-2D">2d</A>
Tani M.
Matsumoto S.
Aida Y.
Arikawa S.
Nakane A.
Yokoyama Y.
Murakami Y.
Chem. Pharm. Bull.
1994,
42:
443
<A NAME="RU09905ST-3A">3a</A>
Joule JA.
In Science of Synthesis
Vol. 10:
Thomas EJ.
Thieme;
Stuttgart:
2000.
p.361-652
<A NAME="RU09905ST-3B">3b</A>
Gribble GW.
J. Chem. Soc., Perkin Trans. 1
2000,
1045
<A NAME="RU09905ST-3C">3c</A>
Moore RE.
Cheuk C.
Yang XQ.
Patterson GML.
Bonjouklian R.
Smitka TA.
Mynderse JS.
Foster RS.
Jones ND.
Swartzendruber JK.
Deeter JB.
J. Org. Chem.
1987,
52:
1036
<A NAME="RU09905ST-3D">3d</A>
Garnick RL.
Levery SB.
Lequesne PW.
J. Org. Chem.
1978,
43:
1226
<A NAME="RU09905ST-3E">3e</A>
Moore RE.
Cheuk C.
Patterson GML.
J. Am. Chem. Soc.
1984,
106:
6456
<A NAME="RU09905ST-4A">4a</A>
Szmuszkovicz J.
J. Am. Chem. Soc.
1975,
79:
2819
<A NAME="RU09905ST-4B">4b</A>
Noland WE.
Christensen GM.
Sauer GL.
Dutton GGS.
J. Am. Chem. Soc.
1955,
77:
456
<A NAME="RU09905ST-4C">4c</A>
Iqbal Z.
Jackson AH.
Rao KRN.
Tetrahedron Lett.
1988,
29:
2577
<A NAME="RU09905ST-5A">5a</A>
Harrington PE.
Kerr MA.
Synlett
1996,
1047
<A NAME="RU09905ST-5B">5b</A>
Harrington PE.
Kerr MA.
Can. J. Chem.
1998,
76:
1256
<A NAME="RU09905ST-5C">5c</A>
Loh TP.
Wei LL.
Synlett
1998,
975
<A NAME="RU09905ST-5D">5d</A>
Loh TP.
Pei J.
Lin M.
Chem. Commun.
1996,
2315
<A NAME="RU09905ST-5E">5e</A>
Yadav JS.
Abraham S.
Reddy BVS.
Sabitha G.
Synthesis
2001,
2165
<A NAME="RU09905ST-5F">5f</A>
Bandini M.
Cozzi PG.
Giacomini M.
Melchiorre P.
Selva S.
Umani-Ronchi A.
J. Org. Chem.
2002,
67:
3700
<A NAME="RU09905ST-5G">5g</A>
Arcadi A.
Bianchi G.
Chiarini M.
Anniballe G.
Marinelli F.
Synlett
2004,
944
<A NAME="RU09905ST-5H">5h</A>
Ji S.-J.
Wang S.-Y.
Synlett
2003,
2074
<A NAME="RU09905ST-5I">5i</A>
Palomo C.
Oiarbide M.
Kardak BG.
Garcia JM.
Linden A.
J. Am. Chem. Soc.
2005,
127:
4154
<A NAME="RU09905ST-6A">6a</A>
Poondra RR.
Turner NJ.
Org. Lett.
2005,
7:
863
<A NAME="RU09905ST-6B">6b</A>
Kudrimoti S.
Bommena VR.
Tetrahedron Lett.
2005,
46:
1209
<A NAME="RU09905ST-6C">6c</A>
Saxena I.
Borah DC.
Sarma JC.
Tetrahedron Lett.
2005,
46:
1159
<A NAME="RU09905ST-6D">6d</A>
Bengtson A.
Hallberg A.
Larhed M.
Org. Lett.
2002,
4:
1231
<A NAME="RU09905ST-7A">7a</A>
Kaval N.
Dehaen W.
Matyus P.
Eycken EV.
Green Chem.
2004,
6:
125
<A NAME="RU09905ST-7B">7b</A>
Ju Y.
Varma RS.
Green Chem.
2004,
6:
219
<A NAME="RU09905ST-7C">7c</A>
Miao G.
Ye P.
Yu L.
Baldino CM.
J. Org. Chem.
2005,
70:
2332
<A NAME="RU09905ST-7D">7d</A>
Poondra RR.
Fischer PM.
Turner NJ.
J. Org. Chem.
2004,
69:
6920
<A NAME="RU09905ST-8A">8a</A>
Evans DA.
Wu J.
J. Am. Chem. Soc.
2003,
125:
10162
<A NAME="RU09905ST-8B">8b</A>
Kobayashi S.
Hamada T.
Nagayama S.
Manabe K.
Org. Lett.
2001,
3:
165
<A NAME="RU09905ST-8C">8c</A>
Sibi MP.
Manyem S.
Org. Lett.
2002,
4:
2929
<A NAME="RU09905ST-8D">8d</A>
Qian C.-T.
Wang L.-C.
Tetrahedron
2000,
56:
7193
<A NAME="RU09905ST-9A">9a</A>
Krief A.
Laval AM.
Chem. Rev.
1999,
99:
745
<A NAME="RU09905ST-9B">9b</A>
Molander GA.
Chem. Rev.
1992,
92:
29
<A NAME="RU09905ST-9C">9c</A>
Molander GA.
Harris CR.
Chem. Rev.
1996,
96:
307
<A NAME="RU09905ST-9D">9d</A>
Steel PG.
J. Chem. Soc., Perkin Trans. 1
2001,
2727
<A NAME="RU09905ST-10A">10a</A>
Evans DA.
Nelson SG.
Gagne MR.
Muci AR.
J. Am. Chem. Soc.
1993,
115:
9800
<A NAME="RU09905ST-10B">10b</A>
Evans DA.
Muci AR.
Stuermer R.
J. Org. Chem.
1993,
58:
5307
<A NAME="RU09905ST-11">11</A>
Typical Experimental Procedure.
To a solution of SmI3 (0.1 mmol) in MeCN (1 mL) was added indole (1 mmol) or 2-methylindole (1 mmol) or
2-phenylindole (1 mmol), electron-deficient olefin (1 mmol) and silica gel (0.25 g).
Then the mixture was mixed thoroughly and dried under reduced pressure. The contents
were taken in a 5-mL conical flask and was placed in a microwave oven (cooking type,
Galanz WP 700P 21-6) and irradiated for 2 min or 15 min at 680 W. After completion
of the reaction indicated by TLC, the reaction mixture was allowed to cool, diluted
with CH2Cl2 and passed through a short silica gel column using CH2Cl2 as eluent. The solvent was evaporated under reduced pressure and the residue was
purified by column chromatography to afford the corresponding 3-alkylated indole.
Procedure for the Reactions with Methyl Vinyl Ketone.
To a solution of SmI3 (0.1 mmol) in MeCN (1 mL) was added indole (1 mmol) or 2-methylindole (1 mmol) or
2-phenylindole (1 mmol), and silica gel (0.25 g). Then the mixture was mixed thoroughly
and dried under reduced pressure, followed by the addition of methyl vinyl ketone
(1 mmol) in CH2Cl2 (0.5 mL) while stirring. The following work up was the same to typical experimental
procedure. All new compounds were fully characterized by 1H NMR, 13C NMR, MS, IR and elemental analysis.
3-(1-Benzyl-1
H
-indol-3-yl)-1,3-diphenylpropan-1-one (e): Yield: 332 mg (80%). IR (film): νmax = 3034, 1680, 1598, 1493 cm-1. 1H NMR (500 MHz, CDCl3): δ = 3.72 (dd, J = 7, 16.5 Hz, 1 H), 3.81 (dd, J = 7, 16.5 Hz, 1 H), 5.09 (t, J = 7 Hz, 1 H), 5.26 (s, 2 H), 6.90-7.07 (m, 4 H), 7.10-7.21 (m, 3 H), 7.23-7.30 (m,
5 H), 7.33-7.47 (m, 5 H), 7.50-7.55 (m, 1 H), 7.88-7.93 (m, 2 H). 13C NMR (125 MHz, CDCl3): δ = 38.3, 45.3, 49.9, 109.7, 118.4, 119.1, 119.8, 121.9, 125.6, 126.3, 126.6, 127.3,
127.5, 127.8, 128.1, 128.4, 128.5, 128.7, 132.9, 137.0, 137.2, 137.6, 144.3, 198.6.
ESI-MS: m/z (%) = 416 (88)[M + H+], 438 (100) [M + Na+]. Anal. Calcd for C30H25NO: C, 86.72; H, 6.06; N, 3.37. Found: C, 86.84; H, 6.05; N, 3.43.
3-[1-(4-methoxyphenyl)-2-nitroethyl]-1
H
-indole (m): Yield: 278 mg (94%). IR (film): νmax = 3412, 3058, 1610, 1548, 1509, 1373 cm-1. 1H NMR (500 MHz, CDCl3): δ = 3.79 (s, 3 H), 4.91 (dd, J = 7.5, 12.5 Hz, 1 H), 5.06 (dd, J = 7.5, 12.5 Hz, 1 H), 5.15 (t, J = 7.5 Hz, 1 H), 6.86 (d, J = 8.5 Hz, 2 H), 7.03 (s, 1 H), 7.09 (t, J = 7.5 Hz, 1 H), 7.21 (t, J = 7.5 Hz, 1 H), 7.26 (d, J = 8.5 Hz, 2 H), 7.36 (d, J = 7.5 Hz, 1 H), 7.45 (d, J = 7.5 Hz, 1 H), 8.10 (s, 1 H). 13C NMR (125 MHz, CDCl3): δ = 40.9, 55.2, 79.7, 111.3, 114.3, 114.8, 119.0, 119.9, 121.4, 122.7, 126.1, 128.8,
131.2, 136.5, 158.9. ESI-MS: m/z (%) = 297 (15) [M + H+], 319 (100) [M + Na+]. Anal. Calcd for C17H16N2O3: C, 68.91; H, 5.44; N, 9.45. Found: C, 68.80; H, 5.32; N, 9.46.
1-Benzyl-3-[1-(4-methoxyphenyl)-2-nitroethyl]-1
H
-indole (n): Yield: 367 mg (95%). IR (film): νmax = 3027, 1606, 1548, 1501, 1373 cm-1. 1H NMR (500 MHz, CDCl3): δ = 3.53 (s, 3 H), 4.66 (dd, J = 7, 11 Hz, 1 H), 4.79 (dd, J = 7, 11 Hz, 1 H), 4.93 (t, J = 7 Hz, 1 H), 5.00 (s, 2 H), 6.64-6.71 (m, 2 H), 6.76-6.80 (m, 1 H), 6.86-6.93 (m,
3 H), 6.96-7.02 (m, 1 H), 7.04-7.16 (m, 6 H), 7.26-7.34 (m, 1 H). 13C NMR (125 MHz, CDCl3): δ = 40.6, 49.6, 54.8, 79.5, 109.8, 113.6, 114.0, 119.0, 119.4, 122.2, 125.4, 126.4,
126.6, 127.4, 128.5, 128.6, 131.2, 136.7, 137.1, 158.6. ESI-MS: m/z (%) = 387 (100) [M + H+], 409 (91) [M + Na+]. Anal. Calcd for C24H22N2O3: C, 74.59; H, 5.74; N, 7.25. Found: C, 74.46; H, 5.73; N, 7.13.
<A NAME="RU09905ST-12">12</A>
Trost BM.
Molander GA.
J. Am. Chem. Soc.
1981,
103:
5969