References
Reviews, see:
<A NAME="RU16705ST-1A">1a</A>
Joule JA.
Indole and its Derivatives, In Science of Synthesis (Houben-Weyl, Methods of Molecular Transformations)
Category 2, Vol. 10:
Thomas EJ.
Georg Thieme Verlag;
Stuttgart:
2000.
Chap. 10.13.
<A NAME="RU16705ST-1B">1b</A>
Sundberg RJ.
Indoles, Best Synthetic Methods
Katritzky AR.
Meth-Cohn E.
Rees CW.
Academic Press;
London:
1996.
<A NAME="RU16705ST-1C">1c</A>
Pyrroles and their Benzo Derivatives, In Comprehensive Heterocyclic Chemistry II
Vol. 2:
Katritzky AR.
Rees CW.
Scriven EFV.
Pergamon;
Oxford:
1996.
Chap. 2.01-2.04.
<A NAME="RU16705ST-1D">1d</A>
Gribble GW.
J. Chem. Soc., Perkin Trans. 1
2000,
1045
Recent representative examples:
<A NAME="RU16705ST-2A">2a</A>
Hiyora K.
Itoh S.
Sakamoto T.
J. Org. Chem.
2004,
69:
1126
<A NAME="RU16705ST-2B">2b</A>
Kessler A.
Coleman CM.
Charoenying P.
O’Shea DF.
J. Org. Chem.
2004,
69:
7836
<A NAME="RU16705ST-2C">2c</A>
Siu J.
Baxendale IR.
Ley SV.
Org. Biomol. Chem.
2004,
2:
160
<A NAME="RU16705ST-2D">2d</A>
Kamijo S.
Yamamoto Y.
J. Org. Chem.
2003,
68:
4764
<A NAME="RU16705ST-2E">2e</A>
Katritzky AR.
Ledoux S.
Nair SK.
J. Org. Chem.
2003,
68:
5728
<A NAME="RU16705ST-2F">2f</A>
Wagaw S.
Yang BH.
Buchwald SL.
J. Am. Chem. Soc.
1999,
121:
10251
<A NAME="RU16705ST-3A">3a</A>
Tokuyama H.
Fukuyama T.
Chem. Rec.
2002,
2:
37
<A NAME="RU16705ST-3B">3b</A>
Fukuyama T.
Chen X.
Peng G.
J. Am. Chem. Soc.
1994,
116:
3127
<A NAME="RU16705ST-3C">3c</A>
Tokuyama H.
Kaburagi Y.
Chen X.
Fukuyama T.
Synthesis
2000,
429
<A NAME="RU16705ST-3D">3d</A>
Tokuyama H.
Watanabe M.
Hayashi Y.
Kurokawa T.
Peng G.
Fukuyama T.
Synlett
2001,
1403
<A NAME="RU16705ST-4">4</A>
Rainier JD.
Kennedy AR.
Chase E.
Tetrahedron Lett.
1999,
40:
6325
<A NAME="RU16705ST-5A">5a</A>
Kobayashi S.
Ueda T.
Fukuyama T.
Synlett
2000,
883
<A NAME="RU16705ST-5B">5b</A>
Sumi S.
Matsumoto K.
Tokuyama H.
Fukuyama T.
Org. Lett.
2003,
5:
1891
<A NAME="RU16705ST-5C">5c</A>
Sumi S.
Matsumoto K.
Tokuyama H.
Fukuyama T.
Tetrahedron
2003,
59:
8571
<A NAME="RU16705ST-6A">6a</A>
Chatgilialoglu C.
Ingold KU.
Scaiano JC.
J. Am. Chem. Soc.
1983,
105:
3292
<A NAME="RU16705ST-6B">6b</A>
Ingold KU.
Lusztyk J.
Scaiano JC.
J. Am. Chem. Soc.
1984,
106:
343
<A NAME="RU16705ST-7A">7a</A>
Yamago S.
Synlett
2004,
1875
<A NAME="RU16705ST-7B">7b</A>
Yamago S.
Miyazoe H.
Goto R.
Yoshida J.
Tetrahedron Lett.
1999,
40:
2347
<A NAME="RU16705ST-7C">7c</A>
Miyazoe H.
Yamago S.
Yoshida J.
Angew. Chem. Int. Ed.
2000,
39:
3669
<A NAME="RU16705ST-7D">7d</A>
Yamago S.
Miyazoe H.
Sawazaki T.
Goto R.
Yoshida J.
Tetrahedron Lett.
2000,
41:
7517
<A NAME="RU16705ST-7E">7e</A>
Yamago S.
Miyazoe H.
Goto R.
Hashidume M.
Sawazaki T.
Yoshida J.
J. Am. Chem. Soc.
2001,
123:
3697
<A NAME="RU16705ST-8">8</A>
Yamago S.
Miyazoe H.
Nakayama T.
Miyoshi M.
Yoshida J.
Angew. Chem. Int. Ed.
2003,
42:
117
For an alternative approach, see:
<A NAME="RU16705ST-9A">9a</A>
Tokuyama H.
Yamashita T.
Reding MT.
Kaburagi Y.
Fukuyama T.
J. Am. Chem. Soc.
1999,
121:
3791
<A NAME="RU16705ST-9B">9b</A>
Reding MT.
Kaburagi Y.
Tokuyama H.
Fukuyama T.
Heterocycles
2002,
56:
313
<A NAME="RU16705ST-9C">9c</A>
Yokoshima S.
Ueda T.
Kobayashi S.
Sato A.
Kuboyama T.
Tokuyama H.
Fukuyama T.
J. Am. Chem. Soc.
2002,
124:
2137
<A NAME="RU16705ST-10">10</A>
Fujiwara S.
Matsuya T.
Maeda H.
Shinike T.
Kambe N.
Sonoda N.
J. Org. Chem.
2001,
66:
2183
<A NAME="RU16705ST-11">11</A>
Bowman WR.
Fletcher AJ.
Lovell PJ.
Pedersen JM.
Synlett
2004,
1904
Attempts to obtain well-defined oligomers by the living radical oligomerization were
also unsuccessful. See:
<A NAME="RU16705ST-12A">12a</A>
Yamago S.
Proc. Japan Acad. Ser. B
2005,
81:
117
<A NAME="RU16705ST-12B">12b</A>
Yamago S.
Iida K.
Yoshida J.
J. Am. Chem. Soc.
2002,
124:
2874
<A NAME="RU16705ST-12C">12c</A>
Yamago S.
Iida K.
Yoshida J.
J. Am. Chem. Soc.
2002,
124:
13666
<A NAME="RU16705ST-12D">12d</A>
Yamago S.
Iida K.
Nakajima M.
Yoshida J.
Macromolecules
2003,
36:
3793
<A NAME="RU16705ST-12E">12e</A>
Goto A.
Kwak Y.
Fukuda T.
Yamago S.
Iida K.
Nakajima M.
Yoshida J.
J. Am. Chem. Soc.
2003,
125:
8720
<A NAME="RU16705ST-13">13</A>
Chatgilialoglu C.
Crich D.
Komatsu M.
Ryu I.
Chem. Rev.
1999,
99:
1991
<A NAME="RU16705ST-14A">14a</A>
Curran DP.
Martin-Esker AA.
Ko S.-B.
Newcomb M.
J. Org. Chem.
1993,
58:
4691
<A NAME="RU16705ST-14B">14b</A>
Newcomb M.
Tetrahedron
1993,
49:
1151
For group-transfer cyclization of organotellurium compounds, see:
<A NAME="RU16705ST-15A">15a</A>
Engman L.
Gupta V.
J. Chem. Soc., Chem. Commun.
1995,
2515
<A NAME="RU16705ST-15B">15b</A>
Engman L.
Gupta V.
J. Org. Chem.
1997,
62:
157
<A NAME="RU16705ST-15C">15c</A>
Berlin S.
Ericsson C.
Engman L.
Org. Lett.
2002,
4:
3
<A NAME="RU16705ST-15D">15d</A>
Berlin S.
Ericsson C.
Engman L.
J. Org. Chem.
2003,
68:
8386
<A NAME="RU16705ST-15E">15e</A>
Ericsson C.
Engman L.
J. Org. Chem.
2004,
69:
5143
<A NAME="RU16705ST-16">16</A>
Typical Experimental Procedures.
To a solution of isocyanide 1A (188 mg, 1.0 mmol) and imine 4a (389 mg, 2.0 mmol) in MeCN (1 mL) was added silyltelluride 5 (739 mg, 2.0 mmol) under nitrogen atmosphere, and the resulting solution was stirred
at 60 °C for 10 h. Solvent was removed under reduced pressure followed by purification
by silica gel column chromatography to give imidoyltelluride 6Aa-ii in 96% yield (562 mg, 0.96 mmol). 1H NMR (600 MHz, CDCl3): δ = 2.68 (br s, 1 H), 3.77 (s, 3 H), 3.96 (d, J = 13.2 Hz, 1 H), 4.06 (d, J = 13.2 Hz, 1 H), 4.59 (s, 1 H), 6.33 (d, J = 16.1 Hz, 1 H), 6.82 (d, J = 7.8 Hz, 2 H), 6.95 (t, J = 7.5 Hz, 2 H), 7.09 (t, J = 7.4 Hz, 1 H), 7.17-7.20 (m, 3 H), 7.27-7.31 (m, 4 H), 7.34-7.37 (m, 4 H), 7.43
(t, J = 7.3 Hz, 2 H), 7.44 (d, J = 8.0 Hz, 2 H), 7.79 (d, J = 16.0 Hz, 1 H). 13C NMR (150 MHz, CDCl3): δ = 51.61, 52.15, 70.15, 112.84, 118.58, 118.76, 124.42, 125.29, 127.11, 127.71
(two peaks), 128.01, 128.38 (two peaks), 128.47, 128.59, 129.05, 130.82, 138.84, 139.72,
140.70, 141.37, 151.46, 167.26. HRMS (FAB): m/z calcd for C31H29O2N2
130Te (M)+: 591.1247; found: 591.1294. A solution of imidoyltelluride 6Aa-ii (59 mg, 0.10 mmol) and AIBN (3.3 mg, 0.02 mmol) tributyltin hydride (32 mg, 0.12
mmol) in benzene (2 mL) was heated to 80 °C with stirring under nitrogen atmosphere
for 1 h. Solvent was removed under reduced pressure followed by purification by silica
gel column chromatography and GPC to give indole 7Aa in 87% yield (23 mg, 0.060 mmol). 1H NMR (600 MHz, CDCl3): δ = 1.72 (br s, 1 H), 3.55 (s, 3 H), 3.68 (s, 2 H), 3.79 (s, 2 H), 5.22 (s, 1 H),
7.09 (t, J = 7.5 Hz, 1 H), 7.15 (t, J = 7.5 Hz, 1 H), 7.24-7.35 (m, 9 H), 7.49 (d, J = 7.6 Hz, 2 H), 7.56 (d, J = 7.9 Hz, 1 H), 8.58 (br s, 1 H). 13C NMR (150 MHz, CDCl3): δ = 30.09, 51.78, 52.01, 58.21, 105.06, 110.95, 118.55, 119.63, 121.91, 127.22,
127.30, 127.67, 128.17, 128.53, 128.57, 128.78, 134.93, 136.89, 139.75, 141.52, 172.13.
HRMS (FAB): m/z calcd for C25H24O2N2 [M]+: 384.1838; found: 384.1832.