Subscribe to RSS
DOI: 10.1055/s-2005-872254
An Investigation of the Reactivity of MCPBA and α-Bromoalkenes under Traditional or Microwave-Assisted Conditions: Selective Formation of Epoxides or Allylic Bromides
Publication History
Publication Date:
29 July 2005 (online)

Abstract
The reaction of α-bromo-β,γ-unsaturated lactams and esters with m-chloroperbenzoic acid has been studied to find experimental conditions that could afford exclusively epoxide formation or bromide 1,3-shift. The results show a strong dependence of reactivity on the dilution and on the amount of peracid used, suggesting a radical mechanism for the bromine rearrangement. This last reaction is also strongly favored by microwave-assisted conditions.
Key words
epoxidation - rearrangements - radical reactions - microwaves - α-bromo derivatives
- For general accounts on MCPBA reactions, see:
- 1a 
             
            Comprehensive Organic Synthesis
              
            Vol. 7: 
             
            Trost BM.Fleming I. Pergamon Press; Oxford: 1991. p.357-372Reference Ris Wihthout Link
- 1b 
             
            Paquette L. Encyclopedia of Reagents for Organic Synthesis Vol. 2: John Wiley and Sons; New York: 1995. p.1192-1198Reference Ris Wihthout Link
- 2 
             
            Prilezhaev N. Ber. 1909, 42: 4811
- For the well-known ‘butterfly’ mechanism of epoxidation see:
- 3a 
             
            Bartlett PA. Rec. Chem. Prog. 1957, 18: 111
- For some recent reports on the radical hypothesis see:
- 3b 
             
            Yamabe S.Kondou C.Minato T. J. Org. Chem. 1996, 61: 616
- 3c 
             
            Okovytyy S.Gorb L.Leszczynski J. Tetrahedron 2002, 58: 8751
- 3d 
             
            Bach RD.Glukhovtsev MN.Gonzalez C. J. Am. Chem. Soc. 1998, 120: 9902
- 4a 
             
            Warrener RN.Elsey GM.Pitt IG.Russell RA. Aust. J. Chem. 1995, 48: 241
- For the synthesis of α-haloepoxides see also:
- 4b 
             
            Ono T.Henderson P. Tetrahedron Lett. 2002, 43: 7961
- 4c 
             
            Taber DF.Mitten JV. J. Org. Chem. 2002, 67: 3847
- 4d 
             
            Benayoud F.Begue JP.Bonnet-Delpon D.Fischer-Durand N.Sdassi H. Synthesis 1993, 1083
- 5 
             
            Kocienski P. J. Chem. Soc., Perkin Trans. 1 1983, 945
- 6 
             
            Nakayama J.Kamiyama H. Tetrahedron Lett. 1992, 49: 7539
- 7a 
             
            Benfatti F.Cardillo G.Fabbroni S.Gentilucci L.Perciaccante R.Piccinelli F.Tolomelli A. Synthesis 2005, 61
- 7b 
             
            Cardillo G.Fabbroni S.Gentilucci L.Perciaccante R.Piccinelli F.Tolomelli A. Org. Lett. 2005, 4: 533
- 7c 
             
            Cardillo G.Fabbroni S.Gentilucci L.Perciaccante R.Tolomelli A. Adv. Synth. Catal. 2005, 6: 833
- 7d 
             
            Benfatti F.Cardillo G.Fabbroni S.Gentilucci L.Perciaccante R.Tolomelli A. ARKIVOC 2005, (vi): 136
- 9a 
             
            Alcaide B.Almendros P. Curr. Med. Chem. 2004, 11: 1921
- 9b 
             
            Deshmukh ARAS.Bhawal BM.Krishnaswamy D.Govande Vidyesh V.Shinkre Bidhan A.Jayanthi A. Curr. Med. Chem. 2004, 11: 1889
- 9c 
             
            Singh GS. Tetrahedron 2003, 59: 7631
- 9d 
             
            Miller MJ.Hsiao CN.Huang NZ.Kalish VJ.Peterson K.Rajendra G. Recent Adv. Chem. β-Lactam Antibiot. 1989, 70: 273 ; special publication of the Royal Society of Chemistry, London
- 9e 
             
            Ojima I.Shimizu N.Qiu Xiaogang C.Hauh JC.Nakahashi K. Bull. Soc. Chim. Fr. 1987, 4: 649
- 10a 
             
            Hayes BL. Aldrichimica Acta 2004, 37: 66
- 10b 
             
            Kappe CO. Angew. Chem. Int. Ed. 2004, 43: 6250
- 11a 
             
            Hanzlik RP.Shearer GO. J. Am. Chem. Soc. 1975, 97: 5231
- 11b 
             
            Kropf H.Yazdanbachsch MR. Tetrahedron 1974, 30: 3455
- 12 
             
            Zhang HY.Sun YM.Wang XL. J. Org. Chem. 2002, 67: 2709
- 13 
             
            Ogata Y.Tabushi I. J. Am. Chem. Soc. 1961, 83: 3440
- 15a 
             
            Cardillo G.Fabbroni S.Gentilucci L.Perciaccante R.Tolomelli A. Tetrahedron: Asymmetry 2004, 15: 593
- 15b 
             
            Cardillo G.De Simone A.Mingardi A.Tomasini C. Synlett 1995, 1131 ; and reference cited therein
- 17 
             
            Fujita M.Ishizuka H.Ogura K. Tetrahedron Lett. 1991, 32: 6355
- 18a 
             
            Bonini C.Righi G. Synthesis 1994, 225
- 18b 
             
            Wang S.Howe GP.Mahal RS.Procter G. Tetrahedron Lett. 1992, 33: 3351
References
         Typical Experimental Procedure.
         
To a stirred solution of 1 (1 mmol) in the solvent of choice at r.t. (see Table 
         [1]
         ), MCPBA was added in one portion. The reaction was stirred overnight and then diluted
         with H2O and CH2Cl2 (5 mL). The two phases were separated and the organic layer was dried over Na2SO4 and solvent was removed under reduced pressure. Compounds 2 and 3 were isolated by flash chromatography on silica gel (cyclo-hexane-ethyl acetate,
         9:1 as eluent). The characterization of compound 3 is reported in ref. 7d. Commercially available MCPBA was used in the reactions. Purified
         peracid (according to J. Am. Chem. Soc. 1987, 109, 2770) was less reactive in the epoxidation, due to the lack of acid impurities.
Compound 2a: first diastereomer: R
         
            f
             = 0.44 (9:1, cyclo-hexane-EtOAc). 1H NMR (300 MHz, CDCl3): δ = 1.02 (3 H, t, J = 7.6 Hz), 1.45-1.81 (2 H, m), 2.89 (1 H, dt, J = 1.8, 5.6 Hz), 3.45 (1 H, d, J = 1.8 Hz), 3.93 (1 H, d, J = 15.0 Hz), 4.59 (1 H, s), 4.97 (1 H, d, J = 15.0 Hz), 7.16-7.44 (10 H, m). 13C NMR (75 MHz, CDCl3): δ = 9.4 (CH3), 24.2 (CH2), 44.9 (CH2), 57.3 (CH), 58.9 (CH), 59.5 (CH), 68.8 (quat), 127.8 (CH), 127.9 (CH), 128.1 (CH),
         128.4 (CH), 128.7 (CH), 128.9 (CH), 133.8 (quat), 134.0 (quat), 164.5 (CO). LC-ESI-MS
         (t
         R 15.2 min): m/z = 386/388 [M + 1], 408/410 [M + Na]. IR (film): 2962, 2928, 1775, 1494, 1454, 1392,
         1351, 1147, 1072 cm-1. Second diastereomer: R
         
            f
             = 0.30 (9:1, cyclohexane-EtOAc). 1H NMR (300 MHz, CDCl3): δ = 1.05 (3 H, t, J = 7.2 Hz), 1.53-1.77 (2 H, m), 3.27 (1 H, d, J = 2.2 Hz), 3.57 (1 H, dt, J = 2.2, 5.6 Hz), 3.91 (1 H, d, J = 15.0 Hz), 4.78 (1 H, s), 4.99 (1 H, d, J = 15.0 Hz), 7.18-7.43 (10 H, m). 13C NMR (75 MHz, CDCl3): δ = 9.6 (CH3), 24.6 (CH2), 44.9 (CH2), 57.6 (CH), 58.7 (CH), 59.4 (CH), 68.4 (quat), 127.7 (CH), 127.9 (CH), 128.2 (CH),
         128.4 (CH), 128.7 (CH), 129.0 (CH), 133.7 (quat), 133.9 (quat), 163.4 (CO). LC-ESI-MS
         (t
         R 14.5 min): m/z = 386/388 [M + 1], 408/410 [M + Na]. IR (film): 3073, 2959, 2930, 1771, 1654, 1455,
         1395, 1355, 1157, 1077 cm-1.
Microwave-assisted reactions have been performed on a Milestone Microsynth Labstation, dual magnetron system with pyramid diffuser, 1600 W power (800X2), maximum delivered power 1000 W, Easywave software. Conditions: 200 W fixed power, 5 min irradiation.
16Compound 5: R
         
            f
             = 0.66 (8:2, cyclohexane-EtOAc). 1H NMR (300 MHz, CDCl3): δ = 1.03 (3 H, t, J = 7.2 Hz), 1.53-1.74 (2 H, m), 2.87 (1 H, dt, J = 1.5, 5.4 Hz), 3.34 (1 H, dd, J = 1.5, 8.4 Hz), 3.85 (1 H, d, J = 8.4 Hz), 5.25 (2 H, s), 7.38 (5 H, m). 13C NMR (75 MHz, CDCl3): δ = 9.6 (CH3), 24.3 (CH2), 43.9 (CH2), 57.0 (CH), 60.5 (CH), 67.9 (CH), 128.2 (CH), 128.4 (CH), 128.6 (CH), 134.8 (quat),
         167.5 (CO). IR (film): 3021, 2968, 1744, 1498, 1456, 1380, 1296, 1257, 1157, 1010
         cm-1.
Compound 6: R
         
            f
             = 0.57 (8:2, cyclohexane-EtOAc). 1H NMR (300 MHz, CDCl3): δ = 1.04 (3 H, t, J = 7.4 Hz), 1.91-2.06 (2 H, m), 4.24-4.54 (1 H, m), 5.21 (2 H, s), 6.00 (1 H, d, J = 15.4 Hz), 7.03 (1 H, dd, J = 15.4, 9.2 Hz), 7.25 (5 H, m). 13C NMR (75 MHz, CDCl3): δ = 12.1 (CH3), 31.2 (CH2), 52.9 (CH2), 66.6 (CH), 121.8 (CH), 128.6 (CH), 128.9 (CH), 129.9 (CH), 134.3 (quat), 135.7
         (CH), 163.0 (CO). IR (film): 2955, 1867, 1755, 1442, 1252, 1218, 1994 cm-1.
         Ring-Opening of Epoxide 5.
         
To a stirred solution of epoxide 5 (1 mmol) in 5 mL of dry CH2Cl2 at -78 °C, TiCl4 (1 mL, solution 1 M in CH2Cl2) was added. The reaction was stirred at this temperature for 3 h and then quenched
         with H2O. After diluting with CH2Cl2, the two phases were separated, the organic one was dried over Na2SO4 and solvent was removed under reduced pressure. Compound 7 was isolated, by flash chromatography on silica gel (cyclohexane-EtOAc, 8:2 as eluant).
Compound 7: R
         
            f
             = 0.52 (8:2, cyclohexane-EtOAc). 1H NMR (300 MHz, CDCl3): δ = 1.08 (3 H, t, J = 7.5 Hz), 1.68-1.85 (1 H, ddq, J = 7.5, 9.3, 14.4 Hz), 1.95-2.09 (1 H, ddq, J = 7.5, 3.0, 14.4 Hz), 3.25 (1 H, d, J = 7.8 Hz), 4.04 (1 H, ddd, J = 3.0, 9.3, 3.0 Hz), 4.12 (1 H, ddd, J = 3.0, 7.8, 5.4 Hz), 4.65 (1 H, d, J = 5.4 Hz), 5.25 (2 H, s), 7.39 (5 H, m). 13C NMR (75 MHz, CDCl3): δ = 10.7 (CH3), 25.0 (CH2), 43.9 (CH2), 65.0 (CH), 68.0 (CH), 76.0 (CH), 128.2 (CH), 128.3 (CH), 128.7 (CH), 134.6 (quat),
         169.0 (CO). IR (film): 3457, 2953, 2919, 1734, 1261, 1013 cm-1 
         Formation of Epoxide 8.
         
To a stirred solution of 7 (1 mmol) in 5 mL of dry THF at 0 °C, NaH (1.1 equiv, 26.5 mg) was added. The reaction
         was stirred at r.t. for 2 h and then quenched by addition of H2O. After removing THF under reduced pressure, the residue was diluted with EtOAc,
         and washed twice with H2O. The organic layer was separated, dried over Na2SO4 and solvent was removed under reduced pressure. Compound 8 was isolated, by flash chromatography on silica gel (cyclohexane-EtOAc, 9:1 as eluent).
Compound 8: R
         
            f
             = 0.54 (8:2, cyclohexane-EtOAc). 1H NMR (300 MHz, CDCl3): δ = 1.10 (3 H, t, J = 8.1 Hz), 1.63-1.96 (2 H, m), 3.39 (1 H, dd, J = 1.5, 4.5 Hz), 3.48 (1 H, d, J& nbsp;= 1.5 Hz), 3.50 (1 H, dt, J = 4.5, 8.1 Hz), 5.26 (2 H, s), 7.39 (5 H, m). 13C NMR (75 MHz, CDCl3): δ = 10.2 (CH3), 28.9 (CH2), 52.8 (CH2), 59.9 (CH), 61.6 (CH), 67.5 (CH), 128.2 (CH), 128.4 (CH), 128.7 (CH), 134.9 (quat),
         167.9 (CO). IR (film): 3034, 2963, 1747, 1497, 1455, 1381, 1264, 1190, 1026 cm-1.
 
    