Abstract
We found that the spacer and additive play a significant role in the oxidation of
alkyl alcohols using polymer-supported IBX-amide reagents. The introduction of the
spacer between the polymer support and IBX-amide group improved the initial conversion
rate (up to 60% conversion). Furthermore, various alcohol compounds, when reacted
with IBX-amide resin in the presence of BF3 ·OEt2 , were effectively converted into the corresponding aldehydes or ketones within 5-30
minutes in high purities (>94%) at room temperature.
Key words
spacer - additive - IBX-amide resin
References
<A NAME="RU10605ST-1A">1a </A>
McNamara CA.
Dixon MJ.
Bradley M.
Chem. Rev.
2002,
102:
3275
<A NAME="RU10605ST-1B">1b </A>
Hodge P.
Curr. Opin. Chem. Biol.
2003,
7:
362
<A NAME="RU10605ST-2A">2a </A>
Bhattacharyya S.
Comb. Chem. High Throughput Screening
2000,
3:
65
<A NAME="RU10605ST-2B">2b </A>
Patchornik AH.
Polym. Adv. Technol.
2002,
13:
1078
<A NAME="RU10605ST-2C">2c </A>
Nam N.-H.
Sardari S.
Parang K.
J. Comb. Chem.
2003,
5:
479
<A NAME="RU10605ST-3A">3a </A>
Hudlicky M.
Oxidation in Organic Chemistry
American Chemical Society;
Washington, DC:
1990.
p.114-163
<A NAME="RU10605ST-3B">3b </A>
Lou JD.
Lou WX.
Synth. Commun.
1997,
27:
3697
<A NAME="RU10605ST-3C">3c </A>
Mirafzal GA.
Lozera M.
Tetrahedron Lett.
1998,
39:
7263
<A NAME="RU10605ST-4A">4a </A>
Fréchet JMJ.
Darling P.
Farrall MJ.
J. Org. Chem.
1981,
46:
1728
<A NAME="RU10605ST-4B">4b </A>
Mohanazadeh F.
Ghamsari S.
React. Funct. Polym.
1996,
29:
193
<A NAME="RU10605ST-4C">4c </A>
Hinzen B.
Ley SV.
J. Chem. Soc., Perkin Trans. 1
1997,
1907
<A NAME="RU10605ST-4D">4d </A>
Kessat A.
Babadjamian A.
Iraqi A.
Eur. Polym. J.
2001,
37:
131
<A NAME="RU10605ST-4E">4e </A>
Tamami B.
Karimi Zarchi MA.
Eur. Polym. J.
1995,
31:
715
<A NAME="RU10605ST-5A">5a </A>
Mülbaier M.
Giannis A.
Angew. Chem. Int. Ed.
2001,
40:
4393
<A NAME="RU10605ST-5B">5b </A>
Sorg G.
Mengel A.
Jung G.
Rademann J.
Angew. Chem. Int. Ed.
2001,
40:
4395
<A NAME="RU10605ST-5C">5c </A>
Reed NN.
Delgado M.
Hereford K.
Clapham B.
Janda KD.
Bioorg. Med. Chem. Lett.
2002,
12:
2047
<A NAME="RU10605ST-5D">5d </A>
Lei Z.
Denecker C.
Jegasothy S.
Sherrington DC.
Slater NKH.
Sutherland AJ.
Tetrahedron Lett.
2003,
44:
1635
<A NAME="RU10605ST-6">6 </A>
Chung W.-J.
Kim D.-K.
Lee Y.-S.
Tetrahedron Lett.
2003,
44:
9251
<A NAME="RU10605ST-7">7 </A>
Zhdankin VV.
Litvinov DN.
Koposov AY.
Luu T.
Ferguson MJ.
McDonald R.
Tykwinski RR.
Chem. Commun.
2004,
106
<A NAME="RU10605ST-8A">8a </A>
Moriarty RM.
Vaid RK.
Ravikumar VT.
Vaid BK.
Hopkins TE.
Tetrahedron Lett.
1988,
44:
1603
<A NAME="RU10605ST-8B">8b </A>
Ochiai M.
Miyamoto K.
Shiro M.
Ozawa T.
Yamaguchi K.
J. Am. Chem. Soc.
2003,
125:
13006
<A NAME="RU10605ST-9">9 </A>
Shukla VG.
Salgaonkar PD.
Akamanchi KG.
J. Org. Chem.
2003,
68:
5422
<A NAME="RU10605ST-10">10 </A>
Swelling volume was determined using a column (ID 0.9 cm, length 40 cm) with sintered
glass filter. Each resin (500 mg) was swollen in CHCl3 for 2 h. Thereafter, the solvent was removed by filtration, and the swelling volume
of each resin was determined as: resin 1 (4.2 mL/g); resin 2 (3.9 mL/g); resin 3 (3.4 mL/g); resin 4 (3.8 mL/g).
<A NAME="RU10605ST-11">11 </A>
Oxidation of 1-decanol (1 equiv) was performed using IBX-amide resin 1 (1.3 equiv) with N -methyl hexanamide (1.3 equiv) in CHCl3 at r.t. The reaction mixture was analyzed by GC-MS after 3 h and 6 h. The conversion
of 1-decanol was compared with that from the oxidation of 1-decanol without N -methyl hexanamide (NMH) under the same condition; 37% (with NMH) and 34% (without
NMH) after 3 h, 43% (with NMH) and 44% (without NMH) after 6 h. No reaction between
NMH and IBX-amide resin 1 was detected.
<A NAME="RU10605ST-12A">12a </A>
Tohma H.
Takizawa S.
Watanabe H.
Kita Y.
Tetrahedron Lett.
1998,
39:
4547
<A NAME="RU10605ST-12B">12b </A>
Tohma H.
Maegawa T.
Takizawa S.
Kita Y.
Adv. Synth. Catal.
2002,
344:
328
<A NAME="RU10605ST-13">13 </A>
Soulard M.
Block F.
Hatterer A.
J. Chem. Soc., Dalton. Trans.
1981,
2300
<A NAME="RU10605ST-14">14 </A>
Kim D.-K.
Chung W.-J.
Lee Y.-S.
Synlett
2005,
279
<A NAME="RU10605ST-15">15 </A>
Three cycles of oxidations with the condition employed in entry 1 (in Table
[1 ]
) and reactivations were investigated. The oxidation capacity was maintained in the
range of 0.55-0.59 mmol/g. The conversions of 1-decanol were determined as >97 (run
1), >97 (run 2), and 95% (run 3).
<A NAME="RU10605ST-16">16 </A>
Kaiser E.
Colescott RLC.
Bossinger D.
Cook PI.
Anal. Biochem.
1970,
34:
595